Map系列之LinkedHashMap

LinkedHashMap繼承HashMap並實現了Map接口,同時具有可預測的迭代順序(按照插入順序排序)。它與HashMap的不同之處在於,維護了一條貫穿其全部Entry的雙向鏈表(因爲額外維護了鏈表的關係,性能上要略差於HashMap,不過集合視圖的遍歷時間與元素數量成正比,而HashMap是與buckets數組的長度成正比的),可以認爲它是散列表與鏈表的結合。

/**

  • The head (eldest) of the doubly linked list.
    /
    transient LinkedHashMap.Entry<K,V> head;
    /
    *
  • The tail (youngest) of the doubly linked list.
    /
    transient LinkedHashMap.Entry<K,V> tail;
    /
    *
  • 迭代順序模式的標記位,如果爲true,採用訪問排序,否則,採用插入順序
  • 默認插入順序(構造函數中默認設置爲false)
    /
    final boolean accessOrder;
    /
    *
  • Constructs an empty insertion-ordered LinkedHashMap instance
  • with the default initial capacity (16) and load factor (0.75).
    */
    public LinkedHashMap() {
    super();
    accessOrder = false;
    }

LinkedHashMap的Entry實現也繼承自HashMap,只不過多了指向前後的兩個指針。

/**

  • HashMap.Node subclass for normal LinkedHashMap entries.
    */
    static class Entry<K,V> extends HashMap.Node<K,V> {
    Entry<K,V> before, after;
    Entry(int hash, K key, V value, Node<K,V> next) {
    super(hash, key, value, next);
    }
    }

你也可以通過構造函數來構造一個迭代順序爲訪問順序(accessOrder設爲true)的LinkedHashMap,這個訪問順序指的是按照最近被訪問的Entry的順序進行排序(從最近最少訪問到最近最多訪問)。基於這點可以簡單實現一個採用LRU(Least Recently Used)策略的緩存。

public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}

LinkedHashMap複用了HashMap的大部分代碼,所以它的查找實現是非常簡單的,唯一稍微複雜點的操作是保證訪問順序。

public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
if (accessOrder)
afterNodeAccess(e);
return e.value;
}

還記得這些afterNodeXXXX命名格式的函數嗎?我們之前已經在HashMap中見識過了,這些函數在HashMap中只是一個空實現,是專門用來讓LinkedHashMap重寫實現的hook函數。

// 在HashMap.removeNode()的末尾處調用
// 將e從LinkedHashMap的雙向鏈表中刪除
void afterNodeRemoval(Node<K,V> e) { // unlink
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.before = p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a == null)
tail = b;
else
a.before = b;
}
// 在HashMap.putVal()的末尾處調用
// evict是一個模式標記,如果爲false代表buckets數組處於創建模式
// HashMap.put()函數對此標記設置爲true
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
// LinkedHashMap.removeEldestEntry()永遠返回false
// 避免了最年長元素被刪除的可能(就像一個普通的Map一樣)
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
// HashMap.get()沒有調用此函數,所以LinkedHashMap重寫了get()
// get()與put()都會調用afterNodeAccess()來保證訪問順序
// 將e移動到tail,代表最近訪問到的節點
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;
if (accessOrder && (last = tail) != e) {
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
p.after = null;
if (b == null)
head = a;
else
b.after = a;
if (a != null)
a.before = b;
else
last = b;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
tail = p;
++modCount;
}
}

注意removeEldestEntry()默認永遠返回false,這時它的行爲與普通的Map無異。如果你把removeEldestEntry()重寫爲永遠返回true,那麼就有可能使LinkedHashMap處於一個永遠爲空的狀態(每次put()或者putAll()都會刪除頭節點)。

一個比較合理的實現示例:

protected boolean removeEldestEntry(Map.Entry eldest){
return size() > MAX_SIZE;
}

LinkedHashMap重寫了newNode()等函數,以初始化或連接節點到它內部的雙向鏈表:

// 鏈接節點p到鏈表尾部(或初始化鏈表)
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
LinkedHashMap.Entry<K,V> last = tail;
tail = p;
if (last == null)
head = p;
else {
p.before = last;
last.after = p;
}
}
// 用dst替換掉src
private void transferLinks(LinkedHashMap.Entry<K,V> src,
LinkedHashMap.Entry<K,V> dst) {
LinkedHashMap.Entry<K,V> b = dst.before = src.before;
LinkedHashMap.Entry<K,V> a = dst.after = src.after;
// src是頭節點
if (b == null)
head = dst;
else
b.after = dst;
// src是尾節點
if (a == null)
tail = dst;
else
a.before = dst;
}
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
linkNodeLast§;
return p;
}
Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
LinkedHashMap.Entry<K,V> t =
new LinkedHashMap.Entry<K,V>(q.hash, q.key, q.value, next);
transferLinks(q, t);
return t;
}
TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next);
linkNodeLast§;
return p;
}
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p;
TreeNode<K,V> t = new TreeNode<K,V>(q.hash, q.key, q.value, next);
transferLinks(q, t);
return t;
}

遍歷LinkedHashMap所需要的時間與Entry數量成正比,這是因爲迭代器直接對雙向鏈表進行迭代,而鏈表中只會含有Entry節點。迭代的順序是從頭節點開始一直到尾節點,插入操作會將新節點鏈接到尾部,所以保證了插入順序,而訪問順序會通過afterNodeAccess()來保證,訪問次數越多的節點越接近尾部。

abstract class LinkedHashIterator {
LinkedHashMap.Entry<K,V> next;
LinkedHashMap.Entry<K,V> current;
int expectedModCount;
LinkedHashIterator() {
next = head;
expectedModCount = modCount;
current = null;
}
public final boolean hasNext() {
return next != null;
}
final LinkedHashMap.Entry<K,V> nextNode() {
LinkedHashMap.Entry<K,V> e = next;
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
if (e == null)
throw new NoSuchElementException();
current = e;
next = e.after;
return e;
}
public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
K key = p.key;
removeNode(hash(key), key, null, false, false);
expectedModCount = modCount;
}
}
final class LinkedKeyIterator extends LinkedHashIterator
implements Iterator {
public final K next() { return nextNode().getKey(); }
}
final class LinkedValueIterator extends LinkedHashIterator
implements Iterator {
public final V next() { return nextNode().value; }
}
final class LinkedEntryIterator extends LinkedHashIterator
implements Iterator<Map.Entry<K,V>> {
public final Map.Entry<K,V> next() { return nextNode(); }
}

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章