tensorflow2------cnn實現

import matplotlib as mpl #畫圖用的庫
import matplotlib.pyplot as plt
#下面這一句是爲了可以在notebook中畫圖
%matplotlib inline
import numpy as np
import sklearn   #機器學習算法庫
import pandas as pd #處理數據的庫   
import os
import sys
import time
import tensorflow as tf

from tensorflow import keras   #使用tensorflow中的keras
#import keras #單純的使用keras

print(tf.__version__)
print(sys.version_info)
for module in mpl, np, sklearn, pd, tf, keras:
    print(module.__name__, module.__version__)



2.0.0
sys.version_info(major=3, minor=6, micro=9, releaselevel='final', serial=0)
matplotlib 3.1.2
numpy 1.18.0
sklearn 0.21.3
pandas 0.25.3
tensorflow 2.0.0
tensorflow_core.keras 2.2.4-tf

在tensorflow中使用CNN時必須添加如下代碼,否則會報Failed to get convolution algorithm. This is probably because cuDNN failed to initialize相關錯誤,具體見博客:https://blog.csdn.net/zz531987464/article/details/103750061

physical_devices = tf.config.experimental.list_physical_devices('GPU')
assert len(physical_devices) > 0, "Not enough GPU hardware devices available"
tf.config.experimental.set_memory_growth(physical_devices[0], True)
fashion_mnist = keras.datasets.fashion_mnist # 該數據集是黑白服裝數據集
#拆分訓練集和測試集
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()
#將訓練集拆分爲訓練集和驗證集
#訓練集共6萬張圖片,我們將前5000張作爲驗證集,後面所有的做訓練集
x_valid, x_train = x_train_all[:5000], x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]

print(x_train[0].dtype)
print(x_train[0]) # 是一個數據矩陣 28*28, 矩陣中的每一個數值都是uint8類型
print(y_train[0]) #這裏的y值均爲數字編碼,非向量,所以後面定義模型損失函數爲 sparse_categorical_crossentropy
print(x_train.shape, y_train.shape)
print(x_valid.shape, y_valid.shape)
print(x_test.shape, y_test.shape)



uint8
[[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0
    0   1   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0  44 127 182 185 161 120  55
    0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0  42 198 251 255 251 249 247 255 252
  214 100   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   2   0   0 233 252 237 239 234 237 235 237 237
  254 227   0   0   0   0   1   0   0   0]
 [  0   0   0   0   0   2   0   0  16 210 225 215 175 217 216 193 196 226
  221 209  50   0   0   2   0   0   0   0]
 [  0   0   0   0   2   0   0 199 229 232 230 245 204 219 253 245 207 194
  223 231 236 235   0   0   3   0   0   0]
 [  0   0   0   0   1   0 137 235 204 209 201 209 234 190 234 218 215 238
  239 204 189 224 154   0   0   0   0   0]
 [  0   0   0   0   0   0 194 201 200 209 202 193 205 194 183 218 231 197
  172 181 193 205 199   0   0   0   0   0]
 [  0   0   0   0   0   3 212 203 188 189 196 198 198 201 196 217 179 167
  183 217 197 202 219  30   0   0   0   0]
 [  0   0   0   0   0  34 225 200 194 190 188 192 196 192 170 202 190 201
  195 200 201 209 227  50   0   0   0   0]
 [  0   0   0   0   0  68 225 210 211 198 192 196 204 196 181 212 197 195
  192 206 220 210 229  93   0   0   0   0]
 [  0   0   0   0   0 111 223 227 253 209 196 204 211 206 183 216 206 210
  203 215 244 224 227 150   0   0   0   0]
 [  0   0   0   0   0 139 225 224 255 202 206 212 209 211 190 213 202 207
  206 222 255 230 220 190   0   0   0   0]
 [  0   0   0   0   0 180 226 224 255 199 204 207 214 214 190 216 206 203
  205 219 243 224 214 234   0   0   0   0]
 [  0   0   0   0   0 225 223 228 254 209 206 208 213 210 191 215 207 204
  208 211 249 226 214 255  38   0   0   0]
 [  0   0   0   0   0 250 232 240 239 211 203 209 205 211 197 215 208 208
  214 213 239 231 219 255  81   0   0   0]
 [  0   0   0   0   0 248 236 247 240 203 200 208 206 214 193 213 212 208
  212 211 243 242 225 254  66   0   0   0]
 [  0   0   0   0   0 247 230 252 226 199 211 202 211 213 182 213 212 206
  202 219 207 247 222 237 104   0   0   0]
 [  0   0   0   0  10 244 219 250 205 199 209 202 209 211 189 214 206 210
  200 212 154 240 208 219 140   0   0   0]
 [  0   0   0   0  21 255 222 238 184 210 192 206 209 210 189 213 211 209
  192 228 155 226 238 241 166   0   0   0]
 [  0   0   0   0  37 245 226 241 150 197 189 204 209 210 183 213 213 201
  184 215 146 216 236 225 154   0   0   0]
 [  0   0   0   0  58 239 227 255 158 193 195 204 209 213 180 207 217 199
  194 211 158 219 236 216 151   0   0   0]
 [  0   0   0   0  68 233 226 243 139 200 193 205 210 208 180 205 212 203
  196 216 157 179 255 216 155   0   0   0]
 [  0   0   0   0  81 225 224 211 138 219 185 201 213 207 197 226 212 200
  190 215 183  90 255 211 147   0   0   0]
 [  0   0   0   0  91 210 230 158 114 205 187 208 209 206 193 210 211 204
  195 204 181  23 255 213 158   0   0   0]
 [  0   0   0   0  87 205 232 109 164 255 214 224 222 210 197 214 225 222
  211 220 217   0 234 216 169   0   0   0]
 [  0   0   0   0  92 213 232 146   5 134 151 162 170 183 182 164 166 178
  162 156  98   0 240 225 210   0   0   0]
 [  0   0   0   0  43 164 206 141   0   0   0   0   0   0   0   0   0   0
    0   0   0   0 127 125  76   0   0   0]]
4
(55000, 28, 28) (55000,)
(5000, 28, 28) (5000,)
(10000, 28, 28) (10000,)
#在圖像分類領域我們提升準確率的手段 歸一化:
# 1.對訓練數據進行歸一化 2. 批歸一化

# x = (x - u)/std  u爲均值,std爲方差
from sklearn.preprocessing import StandardScaler #使用sklearn中的StandardScaler實現訓練數據歸一化

scaler = StandardScaler()

#fit_transform:得到方差、均值、最大最小值然後數據進行歸一化操作
#https://blog.csdn.net/youhuakongzhi/article/details/90519801
#x_train:先轉爲float32用於做除法,x_train本身爲三維矩陣[None,28,28],因爲fit_transform要求二維數據所以需要轉換爲[None, 784],再轉回四維矩陣
x_train_scaled = scaler.fit_transform(x_train.astype(np.float32).reshape(-1,1)).reshape(-1,28,28,1)
#是因爲在trainData的時候,已經使用fit()得到了整體的指標(均值,方差等)並被保存起來了後面驗證集測試集可以使用,所以在測試集上直接transform(),使用之前的指標,
#如果在測試集上再進行fit(),由於兩次的數據不一樣,導致得到不同的指標,會使預測發生偏差,因爲模型是針對之前的數據fit()出來
#的標準來訓練的,而現在的數據是新的標準,會導致預測的不準確
x_valid_scaled = scaler.transform(x_valid.astype(np.float32).reshape(-1,1)).reshape(-1,28,28,1)
x_test_scaled = scaler.transform(x_test.astype(np.float32).reshape(-1,1)).reshape(-1,28,28,1)
#reshape(-1,1)表示(任意行,1列),這裏個人認爲設置裏面什麼參數影響不大,只要是轉換爲二維即可,反正最終要轉換爲三/四 維使用
#展示一下數據集中的圖片

###展示單張圖片
def show_single_image(img_arr):
    plt.imshow(img_arr, cmap="binary") #cmap:將標準化標量映射爲顏色, binary代表白底黑字
    plt.show()
show_single_image(x_train[0])

###展示圖片組
def show_imgs(n_rows, n_cols, x_data, y_data, class_names):
    assert len(x_data) == len(y_data)
    assert n_rows * n_cols < len(x_data)
    plt.figure(figsize = (n_cols * 1.4, n_rows * 1.6)) #.figure 在plt中繪製一張圖片
    for row in range(n_rows):
        for col in range(n_cols):
            index = n_cols * row + col
            plt.subplot(n_rows, n_cols, index + 1) # 創建單個子圖
            plt.imshow(x_data[index], cmap="binary", interpolation='nearest')
            plt.axis('off') #取消座標系
            plt.title(class_names[y_data[index]]) #標題
    plt.show()
    
class_names = ['T-shirt', 'Trouser', 'Pullover', 'Dress', 'Coat', 
               'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
show_imgs(3, 5, x_train, y_train, class_names)

#tf.keras.models.Sequential()

model = keras.models.Sequential()

'''
#使用深度卷積網絡實現

model.add(keras.layers.Flatten(input_shape=[28,28]))
for _ in range(20):
    model.add(keras.layers.Dense(100,activation="selu"))# 激活函數selu自帶數據歸一化功能,在一定程度上也能緩解梯度消失問題

'''
#使用卷積神經網絡實現
#激活函數這裏使用了自帶批歸一化的selu函數來代替使用relu激活函數
model.add(keras.layers.Conv2D(filters=32,kernel_size=3,padding='same',activation="selu",input_shape=(28, 28, 1)))
model.add(keras.layers.Conv2D(filters=32,kernel_size=3,padding='same',activation="selu"))
model.add(keras.layers.MaxPool2D(pool_size=2))

model.add(keras.layers.Conv2D(filters=64,kernel_size=3,padding='same',activation="selu"))
model.add(keras.layers.Conv2D(filters=64,kernel_size=3,padding='same',activation="selu"))
model.add(keras.layers.MaxPool2D(pool_size=2))

model.add(keras.layers.Conv2D(filters=128,kernel_size=3,padding='same',activation="selu"))
model.add(keras.layers.Conv2D(filters=128,kernel_size=3,padding='same',activation="selu"))
model.add(keras.layers.MaxPool2D(pool_size=2))

model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(128, activation="selu"))


#softmax層輸出
model.add(keras.layers.Dense(10,activation="softmax"))

model.compile(loss="sparse_categorical_crossentropy",
             optimizer="adam", #optimizer="sgd", 優化算法一般來說我們無腦用adam即可
             metrics=["accuracy"])

#查看上面建立的模型架構信息
model.summary()



Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 28, 28, 32)        320 == (3*3+1)*32=320     
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 28, 28, 32)        9248 == (3*3*32+1)*32     
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 14, 14, 32)        0  == 只有超參數,無可訓練參數       
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 14, 14, 64)        18496 ==(3*3*32+1)*64    
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 14, 14, 64)        36928 == (3*3*64+1)*64   
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 7, 7, 64)          0         
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 7, 7, 128)         73856 == (3*3*64+1)*128     
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 7, 7, 128)         147584 == (3*3*128+1)*128   
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 3, 3, 128)         0         
_________________________________________________________________
flatten (Flatten)            (None, 1152)              0         
_________________________________________________________________
dense (Dense)                (None, 128)               147584 == 1152*128+128    
_________________________________________________________________
dense_1 (Dense)              (None, 10)                1290 == 128*10+10     
=================================================================
Total params: 435,306
Trainable params: 435,306
Non-trainable params: 0
#Tensorflow中的callback用於模型訓練過程中的一些監聽操作,常用的callback類型如下三類:
#Tensorboard 可視化Tensorboard
#earlystopping 當loss函數不能再優化時停止訓練,這樣可以截取到最優的模型參數
#ModelCheckpoint 每次epoch之後就保存模型

#當前目錄下新建一個callbacks文件夾並在裏面創建一個h5模型文件
import shutil
logdir='./callbacks_cnn'

if os.path.exists(logdir):
    shutil.rmtree(logdir) #先強制刪除該文件夾,後面再新建
os.mkdir(logdir)
        
output_model_file=os.path.join(logdir,"fashion_mnist_model.h5")#在logdir中創建一個模型文件.h5

#定義一個callbacks數組
callbacks = [
    keras.callbacks.TensorBoard(logdir),
    keras.callbacks.ModelCheckpoint(output_model_file,save_best_only=True),#這裏第二個參數表示僅保存最好的那個模型
    keras.callbacks.EarlyStopping(patience=5,min_delta=1e-3)
]

'''
#在未做數據集歸一化時這裏直接將x_train三維矩陣轉換爲四維
x_train = x_train.reshape(-1,28,28,1)
x_valid = x_valid.reshape(-1,28,28,1)
x_test = x_test.reshape(-1,28,28,1)
'''

#fit用於訓練
history=model.fit(x_train_scaled, y_train, epochs=10, #epochs用於遍歷訓練集次數
                  validation_data=(x_valid_scaled,y_valid),#加入驗證集,每隔一段時間就對驗證集進行驗證
                  callbacks=callbacks)
'''
history=model.fit(x_train, y_train, epochs=10, #epochs用於遍歷訓練集次數
                  validation_data=(x_valid,y_valid),#加入驗證集,每隔一段時間就對驗證集進行驗證
                  callbacks=callbacks)
'''



Train on 55000 samples, validate on 5000 samples
Epoch 1/10
55000/55000 [==============================] - 17s 301us/sample - loss: 0.4269 - accuracy: 0.8475 - val_loss: 0.3261 - val_accuracy: 0.8834
Epoch 2/10
55000/55000 [==============================] - 14s 256us/sample - loss: 0.3159 - accuracy: 0.8858 - val_loss: 0.3003 - val_accuracy: 0.8934
Epoch 3/10
55000/55000 [==============================] - 14s 253us/sample - loss: 0.2813 - accuracy: 0.8986 - val_loss: 0.2988 - val_accuracy: 0.8918
Epoch 4/10
55000/55000 [==============================] - 14s 252us/sample - loss: 0.2640 - accuracy: 0.9044 - val_loss: 0.2744 - val_accuracy: 0.9034
Epoch 5/10
55000/55000 [==============================] - 14s 257us/sample - loss: 0.2396 - accuracy: 0.9139 - val_loss: 0.2707 - val_accuracy: 0.9028
Epoch 6/10
55000/55000 [==============================] - 14s 256us/sample - loss: 0.2215 - accuracy: 0.9215 - val_loss: 0.2849 - val_accuracy: 0.9060
Epoch 7/10
55000/55000 [==============================] - 14s 257us/sample - loss: 0.2109 - accuracy: 0.9240 - val_loss: 0.2694 - val_accuracy: 0.9082
Epoch 8/10
55000/55000 [==============================] - 14s 256us/sample - loss: 0.2143 - accuracy: 0.9249 - val_loss: 0.2564 - val_accuracy: 0.9158
Epoch 9/10
55000/55000 [==============================] - 15s 265us/sample - loss: 0.1832 - accuracy: 0.9344 - val_loss: 0.2586 - val_accuracy: 0.9090
Epoch 10/10
55000/55000 [==============================] - 14s 259us/sample - loss: 0.1823 - accuracy: 0.9354 - val_loss: 0.2906 - val_accuracy: 0.9078
#將上面history中的數據指標用一張圖來表示
def plot_learning_curves(history):
    pd.DataFrame(history.history).plot(figsize=(8,5)) #設置圖的大小
    plt.grid(True) #顯示網格
    plt.gca().set_ylim(0,1) #設置y軸範圍
    plt.show()
plot_learning_curves(history)

從上面的學習曲線我們可以看到,從剛開始的時候模型就已經達到了一個比較好的訓練效果,後面的epoch緩慢提升,趨於穩定

#測試集上進行測試評估一下
model.evaluate(x_test_scaled,y_test)



10000/1 [======================================。。。=================] - 1s 102us/sample - loss: 0.2086 - accuracy: 0.9018
[0.3334893117487431, 0.9018]

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章