STL源码剖析RB-tree

一、红黑树概述

     红黑树和我们以前学过的AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。不过自从红黑树出来后,AVL树就被放到了博物馆里,据说是红黑树有更好的效率,更高的统计性能。这一点在我们了解了红黑树的实现原理后,就会有更加深切的体会。
     红黑树和AVL树的区别在于它使用颜色来标识结点的高度,它所追求的是局部平衡而不是AVL树中的非常严格的平衡。学过数据结构的人应该都已经领教过AVL树的复杂,但AVL树的复杂比起红黑树来说简直是小巫见大巫,红黑树才是真正的变态级数据结构。
     由于STL中的关联式容器默认的底层实现都是红黑树,因此红黑树对于后续学习STL源码还是很重要的,有必要掌握红黑树的实现原理和源码实现。
     红黑树是AVL树的变种,红黑树通过一些着色法则确保没有一条路径会比其它路径长出两倍,因而达到接近平衡的目的。所谓红黑树,不仅是一个二叉搜索树,而且必须满足一下规则:
     1、每个节点不是红色就是黑色。
     2、根节点为黑色。
     3、如果节点为红色,其子节点必须为黑色。
     4、任意一个节点到到NULL(树尾端)的任何路径,所含之黑色节点数必须相同。

上面的这些约束保证了这个树大致上是平衡的,这也决定了红黑树的插入、删除、查询等操作是比较快速的。 根据规则4,新增节点必须为红色;根据规则3,新增节点之父节点必须为黑色。当新增节点根据二叉搜索树的规则到达其插入点时,却未能符合上述条件时,就必须调整颜色并旋转树形,如下图:

假设我们为上图分别插入节点3、8、35、75,根据二叉搜索树的规则,插入这四个节点后,我们会发现它们都破坏了红黑树的规则,因此我们必须调整树形,也就是旋转树形并改变节点的颜色。

二、红黑树上结点的插入

      在讨论红黑树的插入操作之前必须要明白,任何一个即将插入的新结点的初始颜色都为红色。这一点很容易理解,因为插入黑点会增加某条路径上黑结点的数目,从而导致整棵树黑高度的不平衡。但如果新结点的父结点为红色时(如下图所示),将会违反红黑树的性质:一条路径上不能出现相邻的两个红色结点。这时就需要通过一系列操作来使红黑树保持平衡。

      为了清楚地表示插入操作以下在结点中使用“新”字表示一个新插入的结点;使用“父”字表示新插入点的父结点;使用“叔”字表示“父”结点的兄弟结点;使用“祖”字表示“父”结点的父结点。插入操作分为以下几种情况:
1、黑父
     如下图所示,如果新节点的父结点为黑色结点,那么插入一个红点将不会影响红黑树的平衡,此时插入操作完成。红黑树比AVL树优秀的地方之一在于黑父的情况比较常见,从而使红黑树需要旋转的机率相对AVL树来说会少一些。

2、红父
     如果新节点的父结点为红色,这时就需要进行一系列操作以保证整棵树红黑性质。如下图所示,由于父结点为红色,此时可以判定,祖父结点必定为黑色。这时需要根据叔父结点的颜色来决定做什么样的操作。青色结点表示颜色未知。由于有可能需要根结点到新点的路径上进行多次旋转操作,而每次进行不平衡判断的起始点(我们可将其视为新点)都不一样。所以我们在此使用一个蓝色箭头指向这个起始点,并称之为判定点。

2.1 红叔
当叔父结点为红色时,如下图所示,无需进行旋转操作,只要将父和叔结点变为黑色,将祖父结点变为红色即可。但由于祖父结点的父结点有可能为红色,从而违反红黑树性质。此时必须将祖父结点作为新的判定点继续向上(迭代)进行平衡操作。

需要注意的是,无论“父节点”在“叔节点”的左边还是右边,无论“新节点”是“父节点”的左孩子还是右孩子,它们的操作都是完全一样的(其实这种情况包括4种,只需调整颜色,不需要旋转树形)。
2.2 黑叔
当叔父结点为黑色时,需要进行旋转,以下图示了所有的旋转可能:
Case 1:

Case 2:

Case 3:

Case 4:

      可以观察到,当旋转完成后,新的旋转根全部为黑色,此时不需要再向上回溯进行平衡操作,插入操作完成。需要注意,上面四张图的“叔”、“1”、“2”、“3”结点有可能为黑哨兵结点。

      其实红黑树的插入操作不是很难,甚至比AVL树的插入操作还更简单些。红黑树的插入操作源代码如下:

三、元素的搜寻

对于一个二叉搜索树而言,搜寻元素对于其而言可以称之简单,下面是寻找RB-tree中是否有键值为k的节点:

// 寻找RBTree中是否存在键值为k的节点
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
typename rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator 
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) {
  link_type y = header;        // Last node which is not less than k. 
  link_type x = root();        // Current node. 

  while (x != 0) 
    // key_compare是节点键值大小比较函数
    if (!key_compare(key(x), k)) 
      // 如果节点x的键值大于等于k,则继续往左子树查找  
      y = x, x = left(x);    // 
    else
      // 如果节点x的键值小于k,则继续往右子树查找
      x = right(x);
  iterator j = iterator(y); 
  // y的键值不小于k,返回的时候需要判断与k是相等还是小于  
  return (j == end() || key_compare(k, key(j.node))) ? end() : j;
}

这里原书中写的是x大于k的时候向左,但是我理解的是大于等于向左走

即key_compare(key(x), k)表示key(x)小于k为真。

这里特别注意:只有当向左走的之前才会保存当前节点到y中,就是为了防止漏掉相等的情况。因为这里没有添加相等的时候直接暂停

循环的语句。

(1)当find77的时候,k=77,while循环结束,y=77,x=0,

        return时,key_compare(k,key(j.node))为false,所以返回j也就是y

(2)当find80的时候,x=80,y=80,x=75;

       75<80,x=77;

       77<80,x=0;while结束。

       return时,y=80.

因为当x>=k的时候会向左走,避免漏掉等于的情况,所以只有向左走的时候记录y。

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章