卡耐基梅隆大學 Probabilistic Graphical Models 課程 | Elements of Meta-Learning 關於元學習和強化學習

在這裏插入圖片描述
Goals for the lecture:

Introduction & overview of the key methods and developments.
[Good starting point for you to start reading and understanding papers!]

Probabilistic Graphical Models | Elements of Meta-Learning

01 Intro to Meta-Learning

在這裏插入圖片描述

Motivation and some examples

When is standard machine learning not enough?
Standard ML finally works for well-defined, stationary tasks.
在這裏插入圖片描述
But how about the complex dynamic world, heterogeneous data from people and the interactive robotic systems?
在這裏插入圖片描述

General formulation and probabilistic view

What is meta-learning?
Standard learning: Given a distribution over examples (single task), learn a function that minimizes the loss:
在這裏插入圖片描述
Learning-to-learn: Given a distribution over tasks, output an adaptation rule that can be used at test time to generalize from a task description
在這裏插入圖片描述

A Toy Example: Few-shot Image Classification
在這裏插入圖片描述
在這裏插入圖片描述

Other (practical) Examples of Few-shot Learning
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述

Gradient-based and other types of meta-learning

Model-agnostic Meta-learning (MAML) 與模型無關的元學習

  • Start with a common model initialization θ\theta
  • Given a new task TiT_i , adapt the model using a gradient step:
    在這裏插入圖片描述
  • Meta-training is learning a shared initialization for all tasks:
    在這裏插入圖片描述
    在這裏插入圖片描述

Does MAML Work?
在這裏插入圖片描述

MAML from a Probabilistic Standpoint
Training points: 在這裏插入圖片描述
testing points:在這裏插入圖片描述
MAML with log-likelihood loss對數似然損失:
在這裏插入圖片描述
在這裏插入圖片描述

One More Example: One-shot Imitation Learning 模仿學習
在這裏插入圖片描述

Prototype-based Meta-learning
在這裏插入圖片描述
Prototypes:
在這裏插入圖片描述
Predictive distribution:
在這裏插入圖片描述
Does Prototype-based Meta-learning Work?
在這裏插入圖片描述

Rapid Learning or Feature Reuse 特徵重用
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述

Neural processes and relation of meta-learning to GPs

Drawing parallels between meta-learning and GPs
In few-shot learning:

  • Learn to identify functions that generated the data from just a few examples.
  • The function class and the adaptation rule encapsulate our prior knowledge.

Recall Gaussian Processes (GPs): 高斯過程

  • Given a few (x, y) pairs, we can compute the predictive mean and variance.
  • Our prior knowledge is encapsulated in the kernel function.

在這裏插入圖片描述

Conditional Neural Processes 條件神經過程
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述
在這裏插入圖片描述

On software packages for meta-learning
A lot of research code releases (code is fragile and sometimes broken)
A few notable libraries that implement a few specific methods:

  • Torchmeta (https://github.com/tristandeleu/pytorch-meta)
  • Learn2learn (https://github.com/learnables/learn2learn)
  • Higher (https://github.com/facebookresearch/higher)

在這裏插入圖片描述
Takeaways

  • Many real-world scenarios require building adaptive systems and cannot be solved using “learn-once” standard ML approach.
  • Learning-to-learn (or meta-learning) attempts extend ML to rich multitask scenarios—instead of learning a function, learn a learning algorithm.
  • Two families of widely popular methods:
    • Gradient-based meta-learning (MAML and such)
    • Prototype-based meta-learning (Protonets, Neural Processes, …)
    • Many hybrids, extensions, improvements (CAIVA, MetaSGD, …)
  • Is it about adaptation or learning good representations? Still unclear and depends on the task; having good representations might be enough.
  • Meta-learning can be used as a mechanism for causal discovery.因果發現 (See Bengio et al., 2019.)

02 Elements of Meta-RL

What is meta-RL and why does it make sense?

Recall the definition of learning-to-learn
Standard learning: Given a distribution over examples (single task), learn a function that minimizes the loss:
在這裏插入圖片描述
Learning-to-learn: Given a distribution over tasks, output an adaptation rule that can be used at test time to generalize from a task description
在這裏插入圖片描述
Meta reinforcement learning (RL): Given a distribution over environments, train a policy update rule that can solve new environments given only limited or no initial experience.
在這裏插入圖片描述

Meta-learning for RL
在這裏插入圖片描述

On-policy and off-policy meta-RL

On-policy RL: Quick Recap 符合策略的RL:快速回顧
在這裏插入圖片描述
REINFORCE algorithm:
在這裏插入圖片描述

On-policy Meta-RL: MAML (again!)

  • Start with a common policy initialization θ\theta
  • Given a new task TiT_i , collect data using initial policy, then adapt using a gradient step:
    在這裏插入圖片描述
  • Meta-training is learning a shared initialization for all tasks:
    在這裏插入圖片描述
    在這裏插入圖片描述
    Adaptation as Inference 適應推理
    Treat policy parameters, tasks, and all trajectories as random variables隨機變量
    在這裏插入圖片描述
    meta-learning = learning a prior and adaptation = inference
    在這裏插入圖片描述
    Off-policy meta-RL: PEARL
    在這裏插入圖片描述
    在這裏插入圖片描述

Key points:

  • Infer latent representations z of each task from the trajectory data.
  • The inference networkq is decoupled from the policy, which enables off-policy learning.
  • All objectives involve the inference and policy networks.
    在這裏插入圖片描述

Adaptation in nonstationary environments 不穩定環境
Classical few-shot learning setup:

  • The tasks are i.i.d. samples from some underlying distribution.
  • Given a new task, we get to interact with it before adapting.
  • What if we are in a nonstationary environment (i.e. changing over time)? Can we still use meta-learning?
    在這裏插入圖片描述
    Example: adaptation to a learning opponent
    在這裏插入圖片描述Each new round is a new task. Nonstationary environment is a sequence of tasks.

Continuous adaptation setup:

  • The tasks are sequentially dependent.
  • meta-learn to exploit dependencies
    在這裏插入圖片描述

Continuous adaptation

Treat policy parameters, tasks, and all trajectories as random variables
在這裏插入圖片描述

RoboSumo: a multiagent competitive env
an agent competes vs. an opponent, the opponent’s behavior changes over time
在這裏插入圖片描述

Takeaways

  • Learning-to-learn (or meta-learning) setup is particularly suitable for multi-task reinforcement learning
  • Both on-policy and off-policy RL can be “upgraded” to meta-RL:
    • On-policy meta-RL is directly enabled by MAML
    • Decoupling task inference and policy learning enables off-policy methods
  • Is it about fast adaptation or learning good multitask representations? (See discussion in Meta-Q-Learning: https://arxiv.org/abs/1910.00125)
  • Probabilistic view of meta-learning allows to use meta-learning ideas beyond distributions of i.i.d. tasks, e.g., continuous adaptation.
  • Very active area of research.
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章