[转]SG函数与SG定理

SG函数与SG定理

必胜点和必败点的概念:

P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败。

N点:必胜点,处于此情况下,双方操作均正确的情况下必胜。

必胜点和必败点的性质:

1、所有终结点是 必败点 P 。(我们以此为基本前提进行推理,换句话说,我们以此为假设)

2、从任何必胜点N 操作,至少有一种方式可以进入必败点 P。

3、无论如何操作,必败点P 都只能进入 必胜点 N。

我们研究必胜点和必败点的目的时间为题进行简化,有助于我们的分析。通常我们分析必胜点和必败点都是以终结点进行逆序分析。我们以hdu 1847 Good Luck in CET-4 Everybody!为例:

当 n = 0 时,显然为必败点,因为此时你已经无法进行操作了

当 n = 1 时,因为你一次就可以拿完所有牌,故此时为必胜点

当 n = 2 时,也是一次就可以拿完,故此时为必胜点

当 n = 3 时,要么就是剩一张要么剩两张,无论怎么取对方都将面对必胜点,故这一点为必败点。

以此类推,最后你就可以得到;

n : 0 1 2 3 4 5 6 …

position: P N N P N N P …

你发现了什么没有,对,他们就是成有规律,使用了 P/N来分析,有没有觉得问题变简单了。

现在给你一个稍微复杂一点点的: hdu 2147 kiki’s game

现在我们就来介绍今天的主角吧。组合游戏的和通常是很复杂的,但是有一种新工具,可以使组合问题变得简单————SG函数和SG定理。

Sprague-Grundy定理(SG定理):

游戏和的SG函数等于各个游戏SG函数的Nim和。这样就可以将每一个子游戏分而治之,从而简化了问题。而Bouton定理就是Sprague-Grundy定理在Nim游戏中的直接应用,因为单堆的Nim游戏 SG函数满足 SG(x) = x。对博弈不是很清楚的请参照http://www.cnblogs.com/ECJTUACM-873284962/p/6398385.html进行进一步理解。

SG函数:

首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG©,那么SG(x) = mex{SG(a),SG(b),SG©}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。

【实例】取石子问题

有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?

SG[0]=0,f[]={1,3,4},

x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;

x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;

x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;

x=4 时,可以取走4- f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;

x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;

以此类推…

x 0 1 2 3 4 5 6 7 8…

SG[x] 0 1 0 1 2 3 2 0 1…

由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:

1、使用 数组f 将 可改变当前状态 的方式记录下来。

2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。

3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。

4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。

代码实现如下:

//f[N]:可改变当前状态的方式,N为方式的种类,f[N]要在getSG之前先预处理
//SG[]:0~n的SG函数值
//S[]:为x后继状态的集合
int f[N],SG[MAXN],S[MAXN];
void  getSG(int n){
    int i,j;
    memset(SG,0,sizeof(SG));
    //因为SG[0]始终等于0,所以i从1开始
    for(i = 1; i <= n; i++){
        //每一次都要将上一状态 的 后继集合 重置
        memset(S,0,sizeof(S));
        for(j = 0; f[j] <= i && j <= N; j++)
            S[SG[i-f[j]]] = 1;  //将后继状态的SG函数值进行标记
        for(j = 0;; j++) if(!S[j]){   //查询当前后继状态SG值中最小的非零值
            SG[i] = j;
            break;
        }
    }
}

hdu 1847 Good Luck in CET-4 Everybody!

#include <iostream>
#include <string.h>
#include <stdio.h>
using namespace std;
const int N=100003;
int n,m,j,k,l,i;
int f[N],sg[N],s[N];
void getsg()
{
   memset(sg,0,sizeof(sg));
   for(i=1;i<=1000;i++)
   {
   	memset(s,0,sizeof(s));
   	for(j=0;f[j]<=i&&j<=15;j++)
   	{
   		s[sg[i-f[j]]]=1;
   	}
   	for(j=0;;j++)
   	if(s[j]==0)
   	{
   		sg[i]=j;
   		break;
   	}
   }
}
int main()
{
   f[0]=1;
   for(i=1;i<=15;i++)
   f[i]=2*f[i-1];
   getsg();
   while(cin>>n)
   {
   	if(sg[n]==0)
   	cout<<"Cici"<<endl;
   	else
   	cout<<"Kiki"<<endl;
   }
   return 0;
}

现在我们来一个实战演练(题目链接):

只要按照上面的思路,解决这个就是分分钟的问题。

代码如下:

#include <iostream>
#include <stdio.h>
#include <string.h>
using namespace std;
const int N=1003;
int n,m,j,k,l,i;
int f[N],s[N],sg[N];
void getsg()
{
	memset(sg,0,sizeof(sg));
	for(i=1;i<=N;i++)
	{
		memset(s,0,sizeof(s));
		for(j=0;f[j]<=i&&j<=20;j++)
		{
			s[sg[i-f[j]]]=1;
		}
		for(j=0;;j++)
		{
			if(s[j]==0)
			{
				sg[i]=j;
				break;
			}
		}
	}
}
int main()
{
	f[0]=f[1]=1;
	for(i=2;i<=20;i++)
	f[i]=f[i-1]+f[i-2];
	getsg();
	while(true)
	{
		cin>>n>>m>>k;
		if(n==0&&m==0&&k==0)
		break;
		int ans=0;
		ans=sg[n]^sg[m]^sg[k];
		if(ans!=0)
		cout<<"Fibo"<<endl;
        else 
		cout<<"Nacci"<<endl;
	}
	return 0;
}
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章