三分鐘讓面試官滿意系列 - Bagging和Boosting 的聯繫及區別

聯繫

Bagging和Boosting都是將已有的分類或迴歸算法通過一定方式組合起來,形成一個性能更加強大的分類器,更準確的說這是一種分類算法的組裝方法。即將弱分類器組裝成強分類器的方法。

介紹

1、Bagging (bootstrap aggregating)

Bagging即套袋法,其算法過程如下:
A)從原始樣本集中抽取訓練集。每輪從原始樣本集中使用Bootstraping(Bootstraping,即自助法:它是一種有放回的抽樣方法(可能抽到重複的樣本))的方法抽取n個訓練樣本(在訓練集中,有些樣本可能被多次抽取到,而有些樣本可能一次都沒有被抽中)。共進行k輪抽取,得到k個訓練集。(k個訓練集之間是相互獨立的)

B)每次使用一個訓練集得到一個模型,k個訓練集共得到k個模型。(注:這裏並沒有具體的分類算法或迴歸方法,我們可以根據具體問題採用不同的分類或迴歸方法,如決策樹、感知器等)

C)對分類問題:將上步得到的k個模型採用投票的方式得到分類結果;對迴歸問題,計算上述模型的均值作爲最後的結果。(所有模型的重要性相同)

2、Boosting

其主要思想是將弱分類器組裝成一個強分類器。在PAC(概率近似正確)學習框架下,則一定可以將弱分類器組裝成一個強分類器。
關於Boosting的兩個核心問題:
1)在每一輪如何改變訓練數據的權值或概率分佈?
通過提高那些在前一輪被弱分類器分錯樣例的權值,減小前一輪分對樣例的權值,來使得分類器對誤分的數據有較好的效果。

2)通過什麼方式來組合弱分類器?
通過加法模型將弱分類器進行線性組合,比如AdaBoost通過加權多數表決的方式,即增大錯誤率小的分類器的權值,同時減小錯誤率較大的分類器的權值。
而提升樹通過擬合殘差的方式逐步減小殘差,將每一步生成的模型疊加得到最終模型。

兩者的區別

1)樣本選擇上:

Bagging:訓練集是在原始集中有放回選取的,從原始集中選出的各輪訓練集之間是獨立的。
Boosting:每一輪的訓練集不變,只是訓練集中每個樣例在分類器中的權重發生變化。而權值是根據上一輪的分類結果進行調整。

2)樣例權重:

Bagging:使用均勻取樣,每個樣例的權重相等
Boosting:根據錯誤率不斷調整樣例的權值,錯誤率越大則權重越大。

3)預測函數:

Bagging:所有預測函數的權重相等。
Boosting:每個弱分類器都有相應的權重,對於分類誤差小的分類器會有更大的權重。

4)並行計算:

Bagging:各個預測函數可以並行生成
Boosting:各個預測函數只能順序生成,因爲後一個模型參數需要前一輪模型的結果。

總結

兩種方法都是多個分類器整合爲一個分類器的方法,只是整合的方式不一樣,這樣的整合會提高單一分類器的分類效果,但也增大了計算量,而且降低了結果的可解釋性。

1)Bagging + 決策樹 = 隨機森林
2)AdaBoost + 決策樹 = 提升樹
3)Gradient Boosting + 決策樹 = GBDT

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章