深入Java底層之HashMap

HashMap的基本操作

map.put("Chinese", 1);
map.put("Math", 2);
map.put("Englist", 3);
map.put("Chemistry", 4);
map.put("Biology", 5);

for (Map.Entry<String, Integer> entry : map.entrySet()) {
    System.out.println(entry.getKey() + ":" + entry.getValue());
}

HashMap的工作原理?

HashMap底層是數組(用table存的)實現的,數組的每個元素是鏈表,由Entry內部類實現(數組table內部是Entry對象)。HashMap通過put方法存儲對象,通過get方法獲取對象。

存儲對象時,我們將K/V傳給put方法時,它調用hashCode計算hash從而得到bucket位置,進一步存儲,HashMap會根據當前bucket的佔用情況自動調整容量(超過Load Facotr則resize爲原來的2倍)。

獲取對象時,我們將K傳給get,它調用hashCode計算hash從而得到bucket位置,並進一步調用equals()方法確定鍵值對。如果發生碰撞的時候,Hashmap通過鏈表將產生碰撞衝突的元素組織起來,在Java 8中,如果一個bucket中碰撞衝突的元素超過某個限制(默認是8),則使用紅黑樹來替換鏈表,從而提高速度。

HashMap構造函數

	//默認的容量爲16,裝填因子爲0.75
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    // 有3個重載的HashMap構造函數
    public HashMap() {
        this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
    }
    
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        this.loadFactor = loadFactor;
        threshold = initialCapacity;
        // init函數爲空,需要有特殊需求的子類單獨實現
        init();
    }

一些參數的說明

threshold: 初始容量,表示哈希表中桶的數量。

loadFactor:負載因子,表示當前哈希表的最大填滿比例。當threshold * loadFactor < 當前哈希表中桶數目(哈希表中元素的個數)時,哈希表的threshold需要擴大爲當前的2倍。

Entry爲HashMap的內部類,它包含了鍵key、值value、下一個節點next,以及hash值。這個內部類非常重要,正是由於Entry才構成table數組的項爲鏈表。

tip

如果對迭代性能要求很高的話不要把capacity設置過大,也不要把load factor設置過小。當bucket填充的數目(即hashmap中元素的個數)大於capacity*load factor時就需要調整buckets的數目爲當前的2倍。

主要函數

put函數的實現

put函數大致的思路爲:

  1. 對key的hashCode()做hash,然後再計算index;
  2. 如果沒碰撞直接放到bucket裏;
  3. 如果碰撞了,以鏈表的形式存在buckets後;
  4. 如果碰撞導致鏈表過長(大於等於TREEIFY_THRESHOLD),就把鏈表轉換成紅黑樹
  5. 如果節點已經存在就替換old value(保證key的唯一性)
  6. 如果bucket滿了(超過load factor*current capacity),就要resize。

具體代碼的實現如下:

public V put(K key, V value) {
    // 對key的hashCode()做hash
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; 
    Node<K,V> p; 
    int n, i;
    // tab爲空則創建
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // 計算index,並對null做處理
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    else {
        Node<K,V> e; K k;
        // 節點存在
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        // 該鏈爲樹
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 該鏈爲鏈表
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        // 寫入
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    ++modCount;
    // 超過load factor*current capacity,resize
    if (++size > threshold)
        resize();
    afterNodeInsertion(evict);
    return null;
}

get函數的實現

public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 直接命中
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 未命中
        if ((e = first.next) != null) {
            // 在樹中get
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 在鏈表中get
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

hash函數的實現

static final int hash(Object key) {
    int h;
    return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

resize函數的實現

final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 超過最大值就不再擴充了,就只好隨你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 沒超過最大值,就擴充爲原來的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                 oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    else if (oldThr > 0) // initial capacity was placed in threshold
        newCap = oldThr;
    else {               // zero initial threshold signifies using defaults
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    // 計算新的resize上限
    if (newThr == 0) {

        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                  (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 把每個bucket都移動到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else { // preserve order
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引+oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket裏
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket裏
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

一些問題

HashMap和HashTable的區別

  • HashTable是線程安全的,HashMap不是。所以,在不需要線程安全的場景下,HashMap的效率更高。
  • HashTable不允許存儲key爲null的鍵值對,HashMap可以存儲,保存在數據下標爲0的鏈表中。

什麼時候會使用HashMap?他有什麼特點?

是基於Map接口的實現,存儲鍵值對時,它可以接收null的鍵值,是非同步的,HashMap存儲着Entry(hash, key, value, next)對象。

你知道HashMap的工作原理嗎?

通過hash的方法,通過put和get存儲和獲取對象。存儲對象時,我們將K/V傳給put方法時,它調用hashCode計算hash從而得到bucket位置,進一步存儲,HashMap會根據當前bucket的佔用情況自動調整容量(超過Load Facotr則resize爲原來的2倍)。獲取對象時,我們將K傳給get,它調用hashCode計算hash從而得到bucket位置,並進一步調用equals()方法確定鍵值對。如果發生碰撞的時候,Hashmap通過鏈表將產生碰撞衝突的元素組織起來,在Java 8中,如果一個bucket中碰撞衝突的元素超過某個限制(默認是8),則使用紅黑樹來替換鏈表,從而提高速度。

你知道get和put的原理嗎?

通過對key的hashCode()進行hashing,並計算下標( n-1 & hash),從而獲得buckets的位置。如果產生碰撞,則利用key.equals()方法去鏈表或樹中去查找對應的節點

你知道hash的實現嗎?爲什麼要這樣實現?

在Java 1.8的實現中,是通過hashCode()的高16位異或低16位實現的:(h = k.hashCode()) ^ (h >>> 16),主要是從速度、功效、質量來考慮的,這麼做可以在bucket的n比較小的時候,也能保證考慮到高低bit都參與到hash的計算中,同時不會有太大的開銷。

如果HashMap的大小超過了負載因子(load factor)定義的容量,怎麼辦?

如果超過了負載因子(默認0.75),則會重新resize一個原來長度兩倍的HashMap,並且重新調用hash方法。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章