3種分佈式鎖實現

1、分佈式鎖的三種實現方式

目前幾乎很多大型網站及應用都是分佈式部署的,分佈式場景中的數據一致性問題一直是一個比較重要的話題。分佈式的CAP理論告訴我們“任何一個分佈式系統都無法同時滿足一致性(Consistency)、可用性(Availability)和分區容錯性(Partition tolerance),最多隻能同時滿足兩項。”所以,很多系統在設計之初就要對這三者做出取捨。在互聯網領域的絕大多數的場景中,都需要犧牲強一致性來換取系統的高可用性,系統往往只需要保證“最終一致性”,只要這個最終時間是在用戶可以接受的範圍內即可。

在很多場景中,我們爲了保證數據的最終一致性,需要很多的技術方案來支持,比如分佈式事務、分佈式鎖等。有的時候,我們需要保證一個方法在同一時間內只能被同一個線程執行。

基於數據庫實現分佈式鎖; 
基於緩存(Redis等)實現分佈式鎖; 
基於Zookeeper實現分佈式鎖;

儘管有這三種方案,但是不同的業務也要根據自己的情況進行選型,他們之間沒有最好只有更適合!

2、基於數據庫的實現方式

基於數據庫的實現方式的核心思想是:在數據庫中創建一個表,表中包含方法名等字段,並在方法名字段上創建唯一索引,想要執行某個方法,就使用這個方法名向表中插入數據,成功插入則獲取鎖,執行完成後刪除對應的行數據釋放鎖。

(1)創建一個表:

DROP TABLE IF EXISTS `method_lock`;
CREATE TABLE `method_lock` (
  `id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '主鍵',
  `method_name` varchar(64) NOT NULL COMMENT '鎖定的方法名',
  `desc` varchar(255) NOT NULL COMMENT '備註信息',
  `update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`),
  UNIQUE KEY `uidx_method_name` (`method_name`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8 COMMENT='鎖定中的方法';
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9

這裏寫圖片描述

(2)想要執行某個方法,就使用這個方法名向表中插入數據:

INSERT INTO method_lock (method_name, desc) VALUES ('methodName', '測試的methodName');
  • 1

因爲我們對method_name做了唯一性約束,這裏如果有多個請求同時提交到數據庫的話,數據庫會保證只有一個操作可以成功,那麼我們就可以認爲操作成功的那個線程獲得了該方法的鎖,可以執行方法體內容。

(3)成功插入則獲取鎖,執行完成後刪除對應的行數據釋放鎖:

delete from method_lock where method_name ='methodName';
  • 1

注意:這只是使用基於數據庫的一種方法,使用數據庫實現分佈式鎖還有很多其他的玩法!

使用基於數據庫的這種實現方式很簡單,但是對於分佈式鎖應該具備的條件來說,它有一些問題需要解決及優化:

1、因爲是基於數據庫實現的,數據庫的可用性和性能將直接影響分佈式鎖的可用性及性能,所以,數據庫需要雙機部署、數據同步、主備切換;

2、不具備可重入的特性,因爲同一個線程在釋放鎖之前,行數據一直存在,無法再次成功插入數據,所以,需要在表中新增一列,用於記錄當前獲取到鎖的機器和線程信息,在再次獲取鎖的時候,先查詢表中機器和線程信息是否和當前機器和線程相同,若相同則直接獲取鎖;

3、沒有鎖失效機制,因爲有可能出現成功插入數據後,服務器宕機了,對應的數據沒有被刪除,當服務恢復後一直獲取不到鎖,所以,需要在表中新增一列,用於記錄失效時間,並且需要有定時任務清除這些失效的數據;

4、不具備阻塞鎖特性,獲取不到鎖直接返回失敗,所以需要優化獲取邏輯,循環多次去獲取。

5、在實施的過程中會遇到各種不同的問題,爲了解決這些問題,實現方式將會越來越複雜;依賴數據庫需要一定的資源開銷,性能問題需要考慮。

五、基於Redis的實現方式

1、選用Redis實現分佈式鎖原因:

(1)Redis有很高的性能; 
(2)Redis命令對此支持較好,實現起來比較方便

2、使用命令介紹:

(1)SETNX

SETNX key val:當且僅當key不存在時,set一個key爲val的字符串,返回1;若key存在,則什麼都不做,返回0
  • 1

(2)expire

expire key timeout:爲key設置一個超時時間,單位爲second,超過這個時間鎖會自動釋放,避免死鎖。
  • 1

(3)delete

delete key:刪除key
  • 1

在使用Redis實現分佈式鎖的時候,主要就會使用到這三個命令。

3、實現思想:

(1)獲取鎖的時候,使用setnx加鎖,並使用expire命令爲鎖添加一個超時時間,超過該時間則自動釋放鎖,鎖的value值爲一個隨機生成的UUID,通過此在釋放鎖的時候進行判斷。

(2)獲取鎖的時候還設置一個獲取的超時時間,若超過這個時間則放棄獲取鎖。

(3)釋放鎖的時候,通過UUID判斷是不是該鎖,若是該鎖,則執行delete進行鎖釋放。

4、 分佈式鎖的簡單實現代碼:

/**
 * 分佈式鎖的簡單實現代碼
 * Created by liuyang on 2017/4/20.
 */
public class DistributedLock {

    private final JedisPool jedisPool;

    public DistributedLock(JedisPool jedisPool) {
        this.jedisPool = jedisPool;
    }

    /**
     * 加鎖
     * @param lockName       鎖的key
     * @param acquireTimeout 獲取超時時間
     * @param timeout        鎖的超時時間
     * @return 鎖標識
     */
    public String lockWithTimeout(String lockName, long acquireTimeout, long timeout) {
        Jedis conn = null;
        String retIdentifier = null;
        try {
            // 獲取連接
            conn = jedisPool.getResource();
            // 隨機生成一個value
            String identifier = UUID.randomUUID().toString();
            // 鎖名,即key值
            String lockKey = "lock:" + lockName;
            // 超時時間,上鎖後超過此時間則自動釋放鎖
            int lockExpire = (int) (timeout / 1000);

            // 獲取鎖的超時時間,超過這個時間則放棄獲取鎖
            long end = System.currentTimeMillis() + acquireTimeout;
            while (System.currentTimeMillis() < end) {
                if (conn.setnx(lockKey, identifier) == 1) {
                    conn.expire(lockKey, lockExpire);
                    // 返回value值,用於釋放鎖時間確認
                    retIdentifier = identifier;
                    return retIdentifier;
                }
                // 返回-1代表key沒有設置超時時間,爲key設置一個超時時間
                if (conn.ttl(lockKey) == -1) {
                    conn.expire(lockKey, lockExpire);
                }

                try {
                    Thread.sleep(10);
                } catch (InterruptedException e) {
                    Thread.currentThread().interrupt();
                }
            }
        } catch (JedisException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                conn.close();
            }
        }
        return retIdentifier;
    }

    /**
     * 釋放鎖
     * @param lockName   鎖的key
     * @param identifier 釋放鎖的標識
     * @return
     */
    public boolean releaseLock(String lockName, String identifier) {
        Jedis conn = null;
        String lockKey = "lock:" + lockName;
        boolean retFlag = false;
        try {
            conn = jedisPool.getResource();
            while (true) {
                // 監視lock,準備開始事務
                conn.watch(lockKey);
                // 通過前面返回的value值判斷是不是該鎖,若是該鎖,則刪除,釋放鎖
                if (identifier.equals(conn.get(lockKey))) {
                    Transaction transaction = conn.multi();
                    transaction.del(lockKey);
                    List<Object> results = transaction.exec();
                    if (results == null) {
                        continue;
                    }
                    retFlag = true;
                }
                conn.unwatch();
                break;
            }
        } catch (JedisException e) {
            e.printStackTrace();
        } finally {
            if (conn != null) {
                conn.close();
            }
        }
        return retFlag;
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100

5、測試剛纔實現的分佈式鎖

例子中使用50個線程模擬秒殺一個商品,使用–運算符來實現商品減少,從結果有序性就可以看出是否爲加鎖狀態。

模擬秒殺服務,在其中配置了jedis線程池,在初始化的時候傳給分佈式鎖,供其使用。

/**
 * Created by liuyang on 2017/4/20.
 */
public class Service {

    private static JedisPool pool = null;

    private DistributedLock lock = new DistributedLock(pool);

    int n = 500;

    static {
        JedisPoolConfig config = new JedisPoolConfig();
        // 設置最大連接數
        config.setMaxTotal(200);
        // 設置最大空閒數
        config.setMaxIdle(8);
        // 設置最大等待時間
        config.setMaxWaitMillis(1000 * 100);
        // 在borrow一個jedis實例時,是否需要驗證,若爲true,則所有jedis實例均是可用的
        config.setTestOnBorrow(true);
        pool = new JedisPool(config, "127.0.0.1", 6379, 3000);
    }

    public void seckill() {
        // 返回鎖的value值,供釋放鎖時候進行判斷
        String identifier = lock.lockWithTimeout("resource", 5000, 1000);
        System.out.println(Thread.currentThread().getName() + "獲得了鎖");
        System.out.println(--n);
        lock.releaseLock("resource", identifier);
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32

模擬線程進行秒殺服務:

public class ThreadA extends Thread {
    private Service service;

    public ThreadA(Service service) {
        this.service = service;
    }

    @Override
    public void run() {
        service.seckill();
    }
}

public class Test {
    public static void main(String[] args) {
        Service service = new Service();
        for (int i = 0; i < 50; i++) {
            ThreadA threadA = new ThreadA(service);
            threadA.start();
        }
    }
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

結果如下,結果爲有序的:

這裏寫圖片描述

若註釋掉使用鎖的部分:

public void seckill() {
    // 返回鎖的value值,供釋放鎖時候進行判斷
    //String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
    System.out.println(Thread.currentThread().getName() + "獲得了鎖");
    System.out.println(--n);
    //lock.releaseLock("resource", indentifier);
}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

從結果可以看出,有一些是異步進行的:

這裏寫圖片描述

5、基於ZooKeeper的實現方式

ZooKeeper是一個爲分佈式應用提供一致性服務的開源組件,它內部是一個分層的文件系統目錄樹結構,規定同一個目錄下只能有一個唯一文件名。基於ZooKeeper實現分佈式鎖的步驟如下:

(1)創建一個目錄mylock; 
(2)線程A想獲取鎖就在mylock目錄下創建臨時順序節點; 
(3)獲取mylock目錄下所有的子節點,然後獲取比自己小的兄弟節點,如果不存在,則說明當前線程順序號最小,獲得鎖; 
(4)線程B獲取所有節點,判斷自己不是最小節點,設置監聽比自己次小的節點; 
(5)線程A處理完,刪除自己的節點,線程B監聽到變更事件,判斷自己是不是最小的節點,如果是則獲得鎖。

這裏推薦一個Apache的開源庫Curator,它是一個ZooKeeper客戶端,Curator提供的InterProcessMutex是分佈式鎖的實現,acquire方法用於獲取鎖,release方法用於釋放鎖。

優點:具備高可用、可重入、阻塞鎖特性,可解決失效死鎖問題。

缺點:因爲需要頻繁的創建和刪除節點,性能上不如Redis方式。

6、總結

上面的三種實現方式,沒有在所有場合都是完美的,所以,應根據不同的應用場景選擇最適合的實現方式。

在分佈式環境中,對資源進行上鎖有時候是很重要的,比如搶購某一資源,這時候使用分佈式鎖就可以很好地控制資源。 
當然,在具體使用中,還需要考慮很多因素,比如超時時間的選取,獲取鎖時間的選取對併發量都有很大的影響,上述實現的分佈式鎖也只是一種簡單的實現,主要是一種思想,以上包括文中的代碼可能並不適用於正式的生產環境,只做入門參考!



發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章