進程內存分配

程序內存佔用分爲以下幾個區
(1)棧區
程序運行時由編譯器自動分配,存放函數的參數值,局部變量的值等。其操作方式類似於數據結構中的棧。程序結束時由編譯器自動釋放。
(2)堆區
在內存開闢另一塊存儲區域。一般由程序員分配釋放, 若程序員不釋放,程序結束時可能由OS回收 。用malloc, calloc, realloc等分配內存的函數分配得到的就是在堆上
(3)全局區(靜態區)
編譯器編譯時即分配內存。全局變量和靜態變量的存儲是放在一塊的。對於C語言初始化的全局變量和靜態變量在一塊區域, 未初始化的全局變量和未初始化的靜態變量在相鄰的另一塊區域。而C++則沒有這個區別 - 程序結束後由系統釋放。
(4)文字常量區
常量字符串就是放在這裏的。 程序結束後由系統釋放
(5)程序代碼區
存放函數體的二進制代碼。
1. //main.cpp   
2. int a = 0;            全局初始化區  //全局變量
3. char *p1;          全局未初始化區  //全局變量
4. main()   
5. {  
6. int b;                          // 棧    //函數中的局部變量
7. char s[] = "abc";      //棧   //函數中的局部變量
8. char *p2;                  //棧   
9. char *p3 = "123456";     //"1234560"在常量區,p3在棧上,值和變量都是存在棧中
10. static int c =0;                    //全局(靜態)初始化區  //函數中的靜態變量
11. p1 = (char *)malloc(10);  
12. p2 = (char *)malloc(20);  
13.                                 //分配得來得10和20字節的區域就在堆區。  
14. strcpy(p1, "123456");         //123456/0放在常量區,編譯器可能會將它與p3所指向的"123456"優化成一個地方。   
15. }  
內存分配方式
   從靜態存儲區域分配。內存在程序編譯的時候就已經分配好,這塊內存在程序的整個運行期間都存在。例如全局變量,static變量
   在棧上創建。在執行函數時,函數內局部變量的存儲單元都可以在棧上創建,函數執行結束時這些存儲單元自動被釋放。棧內存分配運算內置於處理器的指令集中,效率很高,但是分配的內存容量有限。
   從堆上分配,亦稱動態內存分配。程序在運行的時候用malloc或new申請任意多少的內存,程序員自己負責在何時用free或delete釋放內存。動態內存的生存期由程序員決定,使用非常靈活,但如果在堆上分配了空間,就有責任回收它,否則運行的程序會出現內存泄漏,頻繁地分配和釋放不同大小的堆空間將會產生堆內碎塊。
   堆與棧的比較
   申請方式
stack(棧): 由系統自動分配。 例如,聲明在函數中一個局部變量 int b; 系統自動在棧中爲b開闢空間。
heap(堆): 需要程序員自己申請,並指明大小,在C中malloc函數,C++中是new運算符
如p1 = (char *)malloc(10); p1 = new char[10];
如p2 = (char *)malloc(10); p2 = new char[20];
但是注意p1、p2本身是在棧中的。
 申請後系統的響應
棧:只要棧的剩餘空間大於所申請空間,系統將爲程序提供內存,否則將報異常提示棧溢出。
            堆:首先應該知道操作系統有一個記錄空閒內存地址的鏈表,當系統收到程序的申請時,會遍歷該鏈表,尋找第一個空間大於所申請空間的堆結點,然後將該結點從空閒結點鏈表中刪除,並將該結點的空間分配給程序。
  對於大多數系統,會在這塊內存空間中的首地址處記錄本次分配的大小,這樣,代碼中的delete語句才能正確的釋放本內存空間。
  由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部分重新放入空閒鏈表中。
Ø 申請大小的限制
棧:在Windows下,棧是向低地址擴展的數據結構,是一塊連續的內存的區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的,在 WINDOWS下,棧的大小是2M(也有的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩餘空間時,將提示overflow。因 此,能從棧獲得的空間較小。
堆:堆是向高地址擴展的數據結構,是不連續的內存區域。這是由於系統是用鏈表來存儲的空閒內存地址的,自然是不連續的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受限於計算機系統中有效的虛擬內存。由此可見,堆獲得的空間比較靈活,也比較大。
  申請效率的比較
棧由系統自動分配,速度較快。但程序員是無法控制的。
堆是由new分配的內存,一般速度比較慢,而且容易產生內存碎片,不過用起來最方便。
   堆和棧中的存儲內容
棧:在函數調用時,第一個進棧的是主函數中後的下一條指令(函數調用語句的下一條可執行語句)的地址,然後是函數的各個參數,在大多數的C編譯器中,參數是由右往左入棧的,然後是函數中的局部變量。注意靜態變量是不入棧的。
當本次函數調用結束後,局部變量先出棧,然後是參數,最後棧頂指針指向最開始存的地址,也就是主函數中的下一條指令,程序由該點繼續運行。
堆:一般是在堆的頭部用一個字節存放堆的大小。堆中的具體內容有程序員安排。
Ø 存取效率的比較
char s1[] = "a";
char *s2 = "b";
a是在運行時刻賦值的;而b是在編譯時就確定的;但是,在以後的存取中,在棧上的數組比指針所指向的字符串(例如堆)快。
實際上*s2=”b”都是存在在棧裏,但是因爲b是個常量,所以可能會被優化,而存放在靜態變量區
l 堆和棧比較小結
Ø 管理方式:對於棧來講,是由編譯器自動管理,無需我們手工控制;對於堆來說,釋放工作由程序員控制,容易產生memory leak。
Ø 空間大小:一般來講在32位系統下,堆內存可以達到4G的空間,從這個角度來看堆內存幾乎是沒有什麼限制的。但是對於棧來講,一般都是有一定的空間大小的,例如,在VC6下面,默認的棧空間大小是1M。當然,這個值可以修改。
Ø 碎片問題:對於堆來講,頻繁的new/delete勢必會造成內存空間的不連續,從而造成大量的碎片,使程序效率降低。對於棧來講,則不會存在這個問題,因爲棧是先進後出的隊列,他們是如此的一一對應,以至於永遠都不可能有一個內存塊從棧中間彈出,在他彈出之前,在他上面的後進的棧內容已經被彈出,詳細的可以參考數據結構。
Ø 生長方向:對於堆來講,生長方向是向上的,也就是向着內存地址增加的方向;對於棧來講,它的生長方向是向下的,是向着內存地址減小的方向增長。
Ø 分配方式:堆都是動態分配的,沒有靜態分配的堆。棧有2種分配方式:靜態分配和動態分配。靜態分配是編譯器完成的,比如局部變量的分配。動態分配由malloca函數進行分配,但是棧的動態分配和堆是不同的,他的動態分配是由編譯器進行釋放,無需我們手工實現。
Ø 分配效率:棧是機器系統提供的數據結構,計算機會在底層對棧提供支持:分配專門的寄存器存放棧的地址,壓棧出棧都有專門的指令執行,這就決定了棧的效率比較高。堆則是C/C++函數庫提供的,它的機制是很複雜的,例如爲了分配一塊內存,庫函數會按照一定的算法(具體的算法可以參考數據結構/操作系統)在堆內存中搜索可用的足夠大小的空間,如果沒有足夠大小的空間(可能是由於內存碎片太多),就有可能調用系統功能去增加程序數據段的內存空間,這樣就有機會分 到足夠大小的內存,然後進行返回。顯然,堆的效率比棧要低得多。
Ø 無論是堆還是棧,都要防止越界現象的發生(除非你是故意使其越界),因爲越界的結果要麼是程序崩潰,要麼是摧毀程序的堆、棧結構,產生以想不到的結果。
l  
l 棧內存和堆內存的分配
stack上分配的內存系統自動釋放,heap上分配的內存,系統不釋放,哪怕程序退出,那一塊內存還是在那裏。stack一般是靜態分配內存,heap上一般是動態分配內存。由malloc系統函數分配的內存就是從堆上分配內存。從堆上分配的內存一定要自己釋放。用free釋放,不然就是術語--"內存泄露"(或是"內存漏洞")-- Memory Leak,malloc與free是配對。使用的stack也可以動態分配內存,但動態分配後的內存是由系統自動回收的,不需要程序員手動回收
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章