C++ STL源碼學習(之RB Tree篇)

stl_tree.h

這是整個STL中最複雜的數據結構,也是我接觸到的最複雜的數據結構之一

/**
Red-black tree class, designed for use in implementing STL
associative containers (set, multiset, map, and multimap). The
insertion and deletion algorithms are based on those in Cormen,
Leiserson, and Rivest, Introduction to Algorithms (MIT Press, 1990),
except that

(1) the header cell is maintained with links not only to the root
but also to the leftmost node of the tree, to enable constant time
begin(), and to the rightmost node of the tree, to enable linear time
performance when used with the generic set algorithms (set_union,
etc.);

(2) when a node being deleted has two children its successor node is
relinked into its place, rather than copied, so that the only
iterators invalidated are those referring to the deleted node.
*/

typedef bool _Rb_tree_Color_type;
const _Rb_tree_Color_type _S_rb_tree_red = false;
const _Rb_tree_Color_type _S_rb_tree_black = true;

struct _Rb_tree_node_base
{
    typedef _Rb_tree_Color_type _Color_type;
    typedef _Rb_tree_node_base* _Base_ptr;

    _Color_type _M_color;
    _Base_ptr _M_parent;     ///指向父節點的指針
    _Base_ptr _M_left;
    _Base_ptr _M_right;

    ///尋找以x爲根節點的RB樹的最小值結點
    static _Base_ptr _S_minimum(_Base_ptr __x)
    {
        while (__x->_M_left != 0) __x = __x->_M_left;
        return __x;
    }

    ///尋找以x爲根節點的RB樹的最大值結點
    static _Base_ptr _S_maximum(_Base_ptr __x)
    {
        while (__x->_M_right != 0) __x = __x->_M_right;
        return __x;
    }
};

template <class _Value>
struct _Rb_tree_node : public _Rb_tree_node_base
{
    typedef _Rb_tree_node<_Value>* _Link_type;
    _Value _M_value_field;
};


struct _Rb_tree_base_iterator
{
    typedef _Rb_tree_node_base::_Base_ptr _Base_ptr;
    typedef bidirectional_iterator_tag iterator_category;   ///雙向迭代器
    typedef ptrdiff_t difference_type;
    _Base_ptr _M_node;

    ///找到遞增序列的後繼
    void _M_increment()
    {
        if (_M_node->_M_right != 0)    ///如果右子樹非空
        {

            ///找到右子樹的最左端子孫結點
            _M_node = _M_node->_M_right;
            while (_M_node->_M_left != 0)
                _M_node = _M_node->_M_left;
        }
        else                                         ///右子樹爲空
        {

            _Base_ptr __y = _M_node->_M_parent;

            ///沿着父節點上溯,直到其爲父節點的左孩子,或者到達根節點
            while (_M_node == __y->_M_right)
            {
                _M_node = __y;
                __y = __y->_M_parent;
            }

            ///結點的右孩子不爲其父節點,則後繼即爲該父節點,如果結點的右孩子爲其父節點
            ///只有一種情況,根節點無右子樹(根節點爲right_most結點),此時while循環亦會將迭
            ///代器指針指向end結點,因此在此處不需要再次修改迭代器指向.
            if (_M_node->_M_right != __y)
                _M_node = __y;
        }

    }

    ///找到遞增序列的前驅
    void _M_decrement()
    {
        if (_M_node->_M_color == _S_rb_tree_red &&
                _M_node->_M_parent->_M_parent == _M_node)   ///對end迭代器進行遞減,指向最大值
            _M_node = _M_node->_M_right;

        else if (_M_node->_M_left != 0)             ///左子樹不爲空
        {

            ///找到左子樹最右邊子孫結點
            _Base_ptr __y = _M_node->_M_left;
            while (__y->_M_right != 0)
                __y = __y->_M_right;
            _M_node = __y;
        }
        else                                  ///左子樹爲空
        {

            ///沿着父節點上溯,直到其爲父節點的右孩子,或者到達根節點
            _Base_ptr __y = _M_node->_M_parent;
            while (_M_node == __y->_M_left)
            {
                _M_node = __y;
                __y = __y->_M_parent;
            }

            ///找到前驅,即爲其父節點
            _M_node = __y;
        }
    }
};

template <class _Value, class _Ref, class _Ptr>
struct _Rb_tree_iterator : public _Rb_tree_base_iterator
{
    typedef _Value value_type;
    typedef _Ref reference;
    typedef _Ptr pointer;
    typedef _Rb_tree_iterator<_Value, _Value&, _Value*>
    iterator;
    typedef _Rb_tree_iterator<_Value, const _Value&, const _Value*>
    const_iterator;
    typedef _Rb_tree_iterator<_Value, _Ref, _Ptr>
    _Self;
    typedef _Rb_tree_node<_Value>* _Link_type;

    _Rb_tree_iterator() {}
    _Rb_tree_iterator(_Link_type __x)
    {
        _M_node = __x;
    }
    _Rb_tree_iterator(const iterator& __it)
    {
        _M_node = __it._M_node;    ///指向同一位置即可
    }

    reference operator*() const
    {
        return _Link_type(_M_node)->_M_value_field;
    }
    pointer operator->() const
    {
        return &(operator*());
    }

    _Self& operator++()
    {
        _M_increment();
        return *this;
    }
    _Self operator++(int)
    {
        _Self __tmp = *this;
        _M_increment();
        return __tmp;
    }

    _Self& operator--()
    {
        _M_decrement();
        return *this;
    }
    _Self operator--(int)
    {
        _Self __tmp = *this;
        _M_decrement();
        return __tmp;
    }
};

inline bool operator==(const _Rb_tree_base_iterator& __x,
                       const _Rb_tree_base_iterator& __y)
{
    return __x._M_node == __y._M_node;
}

inline bool operator!=(const _Rb_tree_base_iterator& __x,
                       const _Rb_tree_base_iterator& __y)
{
    return __x._M_node != __y._M_node;
}

inline bidirectional_iterator_tag
iterator_category(const _Rb_tree_base_iterator&)
{
    return bidirectional_iterator_tag();
}

inline _Rb_tree_base_iterator::difference_type*
distance_type(const _Rb_tree_base_iterator&)
{
    return (_Rb_tree_base_iterator::difference_type*) 0;
}

template <class _Value, class _Ref, class _Ptr>
inline _Value* value_type(const _Rb_tree_iterator<_Value, _Ref, _Ptr>&)
{
    return (_Value*) 0;
}

///將以__x爲根的子樹左旋
inline void
_Rb_tree_rotate_left(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
    ///用__x->_M_right取代__x的位置,x取代x->_M_right的左孩子
    ///x->_M_right的左孩子取代x的右孩子
    _Rb_tree_node_base* __y = __x->_M_right;
    __x->_M_right = __y->_M_left;
    if (__y->_M_left !=0)
        __y->_M_left->_M_parent = __x;
    __y->_M_parent = __x->_M_parent;

    if (__x == __root)
        __root = __y;
    else if (__x == __x->_M_parent->_M_left)
        __x->_M_parent->_M_left = __y;
    else
        __x->_M_parent->_M_right = __y;
    __y->_M_left = __x;
    __x->_M_parent = __y;
}

///將以__x爲根的子樹右旋
inline void
_Rb_tree_rotate_right(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
    ///用__x->_M_left取代__x的位置,x取代x->_M_left的右孩子
    ///x->_M_left的右孩子取代x的左孩子
    _Rb_tree_node_base* __y = __x->_M_left;
    __x->_M_left = __y->_M_right;
    if (__y->_M_right != 0)
        __y->_M_right->_M_parent = __x;
    __y->_M_parent = __x->_M_parent;

    if (__x == __root)
        __root = __y;
    else if (__x == __x->_M_parent->_M_right)
        __x->_M_parent->_M_right = __y;
    else
        __x->_M_parent->_M_left = __y;
    __y->_M_right = __x;
    __x->_M_parent = __y;
}

///插入結點x之後的調整,使其符合RB樹的定義,
///調整採用按子樹逐層上溯處理,直至整棵樹合法爲止
inline void
_Rb_tree_rebalance(_Rb_tree_node_base* __x, _Rb_tree_node_base*& __root)
{
    __x->_M_color = _S_rb_tree_red;   ///新插入的結點默認爲紅色

    ///如果是根節點,只需要最後矯正根節點顏色,如果其父節點爲黑色,則無需調整.

    while (__x != __root && __x->_M_parent->_M_color == _S_rb_tree_red)
    {

        if (__x->_M_parent == __x->_M_parent->_M_parent->_M_left)     ///父節點爲左孩子
        {

            _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_right;  ///y爲其叔父結點

            if (__y && __y->_M_color == _S_rb_tree_red)            ///父節點和叔父結點同爲紅色
            {

                ///其祖父結點必不爲紅色,因此可以直接將紅色上移至其祖父結點,
                ///然後將其父節點和叔父結點同時染黑,可保證自其祖父結點以下
                ///滿足RB樹的定義.
                __x->_M_parent->_M_color = _S_rb_tree_black;
                __y->_M_color = _S_rb_tree_black;
                __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
                __x = __x->_M_parent->_M_parent;  ///將x指向其祖父結點,再次循環從其祖父結點開始調整
            }
            else                          ///其叔父結點爲黑色
            {
                ///此時x,x父節點均爲紅色,x叔父結點爲黑色
                if (__x == __x->_M_parent->_M_right)    ///調整,將x調整爲左孩子交由後面處理
                {
                    __x = __x->_M_parent;
                    _Rb_tree_rotate_left(__x, __root);
                }

                ///此時x必爲左孩子,且x,x父節點均爲紅色,x叔父結點爲黑色
                __x->_M_parent->_M_color = _S_rb_tree_black;
                __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
                _Rb_tree_rotate_right(__x->_M_parent->_M_parent, __root);
                ///此時x父節點已經爲黑色,可保證整棵樹符合RB樹的定義,完全可以跳出循環
            }
        }
        else                                   ///父節點爲右孩子,和上面對稱操作
        {
            _Rb_tree_node_base* __y = __x->_M_parent->_M_parent->_M_left;
            if (__y && __y->_M_color == _S_rb_tree_red)
            {
                __x->_M_parent->_M_color = _S_rb_tree_black;
                __y->_M_color = _S_rb_tree_black;
                __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
                __x = __x->_M_parent->_M_parent;
            }
            else
            {
                if (__x == __x->_M_parent->_M_left)
                {
                    __x = __x->_M_parent;
                    _Rb_tree_rotate_right(__x, __root);
                }
                __x->_M_parent->_M_color = _S_rb_tree_black;
                __x->_M_parent->_M_parent->_M_color = _S_rb_tree_red;
                _Rb_tree_rotate_left(__x->_M_parent->_M_parent, __root);
            }
        }
    }
    __root->_M_color = _S_rb_tree_black;    ///調整根節點顏色
}

///刪除結點z並調整該樹,使其符合RB樹的定義
inline _Rb_tree_node_base*
_Rb_tree_rebalance_for_erase(_Rb_tree_node_base* __z,
                             _Rb_tree_node_base*& __root,
                             _Rb_tree_node_base*& __leftmost,
                             _Rb_tree_node_base*& __rightmost)
{
    _Rb_tree_node_base* __y = __z;
    _Rb_tree_node_base* __x = 0;
    _Rb_tree_node_base* __x_parent = 0;
    if (__y->_M_left == 0)     /// __z has at most one non-null child. y == z.
        __x = __y->_M_right;     /// __x might be null.
    else if (__y->_M_right == 0) /// __z has exactly one non-null child. y == z.
        __x = __y->_M_left;    /// __x is not null.
    else
    {

        ///爲了刪除以後方便調整,RB樹只刪除沒有孩子或只有一個孩子的結點
        ///如果需要刪除的結點具有雙孩子,需要找到該結點的後繼(一定無雙孩子)
        ///然後用後繼代替該節點,同時染上該節點的顏色,調整因此,實際刪除
        ///的結點永遠無雙孩子

        /// __z has two non-null children.  Set __y to
        __y = __y->_M_right;   ///   __z's successor.  __x might be null.
        while (__y->_M_left != 0)
            __y = __y->_M_left;

        __x = __y->_M_right;
    }

    if (__y != __z)            ///z具有雙孩子
    {

        /// relink y in place of z.  y is z's successor
        __z->_M_left->_M_parent = __y;
        __y->_M_left = __z->_M_left;

        if (__y != __z->_M_right)
        {

            __x_parent = __y->_M_parent;
            if (__x) __x->_M_parent = __y->_M_parent;

            __y->_M_parent->_M_left = __x;      /// __y must be a child of _M_left
            __y->_M_right = __z->_M_right;
            __z->_M_right->_M_parent = __y;
        }
        else
            __x_parent = __y;

        if (__root == __z)
            __root = __y;
        else if (__z->_M_parent->_M_left == __z)
            __z->_M_parent->_M_left = __y;
        else
            __z->_M_parent->_M_right = __y;

        __y->_M_parent = __z->_M_parent;
        __STD::swap(__y->_M_color, __z->_M_color);
        __y = __z;
        /// __y now points to node to be actually deleted
    }
    else                          /// __y == __z
    {
        ///z不具有雙孩子
        __x_parent = __y->_M_parent;
        if (__x) __x->_M_parent = __y->_M_parent;
        if (__root == __z)
            __root = __x;
        else if (__z->_M_parent->_M_left == __z)
            __z->_M_parent->_M_left = __x;
        else
            __z->_M_parent->_M_right = __x;

        if (__leftmost == __z)
            if (__z->_M_right == 0)        /// __z->_M_left must be null also
                __leftmost = __z->_M_parent;
        /// makes __leftmost == _M_header if __z == __root
            else
                __leftmost = _Rb_tree_node_base::_S_minimum(__x);

        if (__rightmost == __z)
            if (__z->_M_left == 0)         /// __z->_M_right must be null also
                __rightmost = __z->_M_parent;
        /// makes __rightmost == _M_header if __z == __root
            else                      /// __x == __z->_M_left
                __rightmost = _Rb_tree_node_base::_S_maximum(__x);
    }

    ///刪除完畢,需要調整,和rebalance一樣是按子樹逐層上溯處理,直到整棵樹合法爲止

    ///如果爲紅色結點不需要調整
    if (__y->_M_color != _S_rb_tree_red)
    {

        ///如果x是根結點或者紅色結點,只需最後調整結點顏色爲黑色即可使整棵樹滿足RB樹的定義
        while (__x != __root && (__x == 0 || __x->_M_color == _S_rb_tree_black))
            if (__x == __x_parent->_M_left)
            {

                ///w爲被刪結點的兄弟,由於刪除操作,w子樹比x子樹多一個黑結點
                _Rb_tree_node_base* __w = __x_parent->_M_right;

                if (__w->_M_color == _S_rb_tree_red)
                {
                    ///通過調整將w變爲黑色,交由下面處理
                    __w->_M_color = _S_rb_tree_black;
                    __x_parent->_M_color = _S_rb_tree_red;
                    _Rb_tree_rotate_left(__x_parent, __root);
                    __w = __x_parent->_M_right;
                }

                ///此時w一定爲黑色,而且仍然比x子樹多一個黑結點
                if ((__w->_M_left == 0 ||
                        __w->_M_left->_M_color == _S_rb_tree_black) &&
                        (__w->_M_right == 0 ||
                         __w->_M_right->_M_color == _S_rb_tree_black))  ///w的兩個孩子均爲黑色
                {

                    ///將w染成紅色,此時w子樹減少了一個黑結點,和x子樹黑結點數目相同
                    ///但__x_parent子樹比其兄弟子樹少一個結點,因此令x=__x_parent,
                    ///交由下次循環處理
                    __w->_M_color = _S_rb_tree_red;
                    __x = __x_parent;

                    __x_parent = __x_parent->_M_parent;
                }
                else                           ///w爲黑色,其孩子一紅一黑或者同爲紅色
                {

                    if (__w->_M_right == 0 ||
                            __w->_M_right->_M_color == _S_rb_tree_black)       ///w孩子節點左紅右黑
                    {

                        if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;

                        __w->_M_color = _S_rb_tree_red;
                        _Rb_tree_rotate_right(__w, __root);
                        __w = __x_parent->_M_right;
                        ///此處w仍然爲黑色,w子樹的黑結點仍然比x子樹多1,但w的孩子節點爲左黑右紅,交由下面處理
                    }

                    ///此時此處w一定爲黑色,w子樹的黑結點一定比x子樹多1,w的右孩子節點一定爲紅色
                    __w->_M_color = __x_parent->_M_color;
                    __x_parent->_M_color = _S_rb_tree_black;
                    if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
                    _Rb_tree_rotate_left(__x_parent, __root);
                    ///至此處可保證整棵樹符合RB樹的定義
                    break;
                }
            }
            else                      /// same as above, with _M_right <-> _M_left.
            {
                _Rb_tree_node_base* __w = __x_parent->_M_left;
                if (__w->_M_color == _S_rb_tree_red)
                {
                    __w->_M_color = _S_rb_tree_black;
                    __x_parent->_M_color = _S_rb_tree_red;
                    _Rb_tree_rotate_right(__x_parent, __root);
                    __w = __x_parent->_M_left;
                }
                if ((__w->_M_right == 0 ||
                        __w->_M_right->_M_color == _S_rb_tree_black) &&
                        (__w->_M_left == 0 ||
                         __w->_M_left->_M_color == _S_rb_tree_black))
                {
                    __w->_M_color = _S_rb_tree_red;
                    __x = __x_parent;
                    __x_parent = __x_parent->_M_parent;
                }
                else
                {
                    if (__w->_M_left == 0 ||
                            __w->_M_left->_M_color == _S_rb_tree_black)
                    {
                        if (__w->_M_right) __w->_M_right->_M_color = _S_rb_tree_black;
                        __w->_M_color = _S_rb_tree_red;
                        _Rb_tree_rotate_left(__w, __root);
                        __w = __x_parent->_M_left;
                    }
                    __w->_M_color = __x_parent->_M_color;
                    __x_parent->_M_color = _S_rb_tree_black;
                    if (__w->_M_left) __w->_M_left->_M_color = _S_rb_tree_black;
                    _Rb_tree_rotate_right(__x_parent, __root);
                    break;
                }
            }

        if (__x) __x->_M_color = _S_rb_tree_black;
    }
    return __y;
}

/// In order to avoid having an empty base class, we arbitrarily
///move one of rb_tree's data members into the base class.

template <class _Tp, class _Alloc>
struct _Rb_tree_base
{
    typedef _Alloc allocator_type;
    allocator_type get_allocator() const
    {
        return allocator_type();
    }

    _Rb_tree_base(const allocator_type&)
        : _M_header(0)
    {
        _M_header = _M_get_node();
    }
    ~_Rb_tree_base()
    {
        _M_put_node(_M_header);
    }

protected:
    _Rb_tree_node<_Tp>* _M_header;    ///不存儲數據元素,只存儲指向根節點,最小節點,
    ///和最大結點的指針
    typedef simple_alloc<_Rb_tree_node<_Tp>, _Alloc> _Alloc_type;

    _Rb_tree_node<_Tp>* _M_get_node()
    {
        return _Alloc_type::allocate(1);
    }
    void _M_put_node(_Rb_tree_node<_Tp>* __p)
    {
        _Alloc_type::deallocate(__p, 1);
    }
};

template <class _Key, class _Value, class _KeyOfValue, class _Compare,
         class _Alloc = Stl_Default_Alloc >
class _Rb_tree : protected _Rb_tree_base<_Value, _Alloc>
{
    typedef _Rb_tree_base<_Value, _Alloc> _Base;
protected:
    typedef _Rb_tree_node_base* _Base_ptr;
    typedef _Rb_tree_node<_Value> _Rb_tree_node;
    typedef _Rb_tree_Color_type _Color_type;
public:
    typedef _Key key_type;
    typedef _Value value_type;
    typedef value_type* pointer;
    typedef const value_type* const_pointer;
    typedef value_type& reference;
    typedef const value_type& const_reference;
    typedef _Rb_tree_node* _Link_type;
    typedef size_t size_type;
    typedef ptrdiff_t difference_type;

    typedef typename _Base::allocator_type allocator_type;
    allocator_type get_allocator() const
    {
        return _Base::get_allocator();
    }

protected:
    using _Base::_M_get_node;
    using _Base::_M_put_node;
    using _Base::_M_header;

protected:

    _Link_type _M_create_node(const value_type& __x)
    {
        _Link_type __tmp = _M_get_node();
        try
        {
            construct(&__tmp->_M_value_field, __x);
        }
        catch(...)
        {
            _M_put_node(__tmp);
        }

        return __tmp;
    }

    _Link_type _M_clone_node(_Link_type __x)
    {
        _Link_type __tmp = _M_create_node(__x->_M_value_field);
        __tmp->_M_color = __x->_M_color;
        __tmp->_M_left = 0;
        __tmp->_M_right = 0;
        return __tmp;
    }

    void destroy_node(_Link_type __p)
    {
        destroy(&__p->_M_value_field);
        _M_put_node(__p);
    }

protected:
    size_type _M_node_count; /// keeps track of size of tree
    _Compare _M_key_compare;

    _Link_type& _M_root() const   ///_M_header和_M_root互爲父節點
    {
        return (_Link_type&) _M_header->_M_parent;
    }

    _Link_type& _M_leftmost() const        ///_M_header->_M_left指向最小值,即最左端結點
    {
        return (_Link_type&) _M_header->_M_left;
    }

    _Link_type& _M_rightmost() const          ///_M_header->_M_right指向最大值,即最右端結點
    {
        return (_Link_type&) _M_header->_M_right;
    }

    static _Link_type& _S_left(_Link_type __x)
    {
        return (_Link_type&)(__x->_M_left);
    }
    static _Link_type& _S_right(_Link_type __x)
    {
        return (_Link_type&)(__x->_M_right);
    }
    static _Link_type& _S_parent(_Link_type __x)
    {
        return (_Link_type&)(__x->_M_parent);
    }
    static reference _S_value(_Link_type __x)
    {
        return __x->_M_value_field;
    }
    static const _Key& _S_key(_Link_type __x)
    {
        return _KeyOfValue()(_S_value(__x));
    }
    static _Color_type& _S_color(_Link_type __x)
    {
        return (_Color_type&)(__x->_M_color);
    }

    static _Link_type& _S_left(_Base_ptr __x)
    {
        return (_Link_type&)(__x->_M_left);
    }
    static _Link_type& _S_right(_Base_ptr __x)
    {
        return (_Link_type&)(__x->_M_right);
    }
    static _Link_type& _S_parent(_Base_ptr __x)
    {
        return (_Link_type&)(__x->_M_parent);
    }
    static reference _S_value(_Base_ptr __x)
    {
        return ((_Link_type)__x)->_M_value_field;
    }
    static const _Key& _S_key(_Base_ptr __x)
    {
        return _KeyOfValue()(_S_value(_Link_type(__x)));
    }
    static _Color_type& _S_color(_Base_ptr __x)
    {
        return (_Color_type&)(_Link_type(__x)->_M_color);
    }

    static _Link_type _S_minimum(_Link_type __x)
    {
        return (_Link_type)  _Rb_tree_node_base::_S_minimum(__x);
    }

    static _Link_type _S_maximum(_Link_type __x)
    {
        return (_Link_type) _Rb_tree_node_base::_S_maximum(__x);
    }

public:
    typedef _Rb_tree_iterator<value_type, reference, pointer> iterator;
    typedef _Rb_tree_iterator<value_type, const_reference, const_pointer>
    const_iterator;

    typedef reverse_bidirectional_iterator<iterator, value_type, reference,
            difference_type>
            reverse_iterator;
    typedef reverse_bidirectional_iterator<const_iterator, value_type,
            const_reference, difference_type>
            const_reverse_iterator;
private:
    iterator _M_insert(_Base_ptr __x, _Base_ptr __y, const value_type& __v);
    _Link_type _M_copy(_Link_type __x, _Link_type __p);
    void _M_erase(_Link_type __x);

public:
    /// allocation/deallocation
    _Rb_tree()
        : _Base(allocator_type()), _M_node_count(0), _M_key_compare()
    {
        _M_empty_initialize();
    }

    _Rb_tree(const _Compare& __comp)
        : _Base(allocator_type()), _M_node_count(0), _M_key_compare(__comp)
    {
        _M_empty_initialize();
    }

    _Rb_tree(const _Compare& __comp, const allocator_type& __a)
        : _Base(__a), _M_node_count(0), _M_key_compare(__comp)
    {
        _M_empty_initialize();
    }

    _Rb_tree(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)   ///copy constructor
        : _Base(__x.get_allocator()),
          _M_node_count(0), _M_key_compare(__x._M_key_compare)
    {
        if (__x._M_root() == 0)
            _M_empty_initialize();
        else
        {
            _S_color(_M_header) = _S_rb_tree_red;
            _M_root() = _M_copy(__x._M_root(), _M_header);
            _M_leftmost() = _S_minimum(_M_root());
            _M_rightmost() = _S_maximum(_M_root());
        }
        _M_node_count = __x._M_node_count;
    }
    ~_Rb_tree()
    {
        clear();
    }
    _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
    operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x);

private:
    void _M_empty_initialize()      ///空樹的創建
    {
        _S_color(_M_header) = _S_rb_tree_red; /// used to distinguish header from
        /// __root, in iterator.operator++
        _M_root() = 0;
        _M_leftmost() = _M_header;
        _M_rightmost() = _M_header;
    }

public:
    /// accessors:
    _Compare key_comp() const
    {
        return _M_key_compare;
    }
    iterator begin()
    {
        return _M_leftmost();
    }
    const_iterator begin() const
    {
        return _M_leftmost();
    }
    iterator end()
    {
        return _M_header;
    }
    const_iterator end() const
    {
        return _M_header;
    }
    reverse_iterator rbegin()
    {
        return reverse_iterator(end());
    }
    const_reverse_iterator rbegin() const
    {
        return const_reverse_iterator(end());
    }
    reverse_iterator rend()
    {
        return reverse_iterator(begin());
    }
    const_reverse_iterator rend() const
    {
        return const_reverse_iterator(begin());
    }
    bool empty() const
    {
        return _M_node_count == 0;
    }
    size_type size() const
    {
        return _M_node_count;
    }
    size_type max_size() const
    {
        return size_type(-1);
    }

    void swap(_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __t)
    {
        __STD::swap(_M_header, __t._M_header);
        __STD::swap(_M_node_count, __t._M_node_count);
        __STD::swap(_M_key_compare, __t._M_key_compare);   ///一定要交換比較函數
    }

public:
    /// insert/erase
    pair<iterator,bool> insert_unique(const value_type& __x);
    iterator insert_equal(const value_type& __x);

    iterator insert_unique(iterator __position, const value_type& __x);
    iterator insert_equal(iterator __position, const value_type& __x);


    template <class _InputIterator>
    void insert_unique(_InputIterator __first, _InputIterator __last);
    template <class _InputIterator>
    void insert_equal(_InputIterator __first, _InputIterator __last);


    void erase(iterator __position);
    size_type erase(const key_type& __x);
    void erase(iterator __first, iterator __last);
    void erase(const key_type* __first, const key_type* __last);
    void clear()                   ///將樹清空
    {
        if (_M_node_count != 0)
        {
            _M_erase(_M_root());
            _M_leftmost() = _M_header;
            _M_root() = 0;
            _M_rightmost() = _M_header;
            _M_node_count = 0;
        }
    }

public:
    /// set operations:
    iterator find(const key_type& __x);
    const_iterator find(const key_type& __x) const;
    size_type count(const key_type& __x) const;
    iterator lower_bound(const key_type& __x);
    const_iterator lower_bound(const key_type& __x) const;
    iterator upper_bound(const key_type& __x);
    const_iterator upper_bound(const key_type& __x) const;
    pair<iterator,iterator> equal_range(const key_type& __x);
    pair<const_iterator, const_iterator> equal_range(const key_type& __x) const;

public:
    /// Debugging.
    bool __rb_verify() const;
};

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
inline bool
operator==(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
           const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
    return __x.size() == __y.size() &&
           equal(__x.begin(), __x.end(), __y.begin());
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
inline bool
operator<(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x,
          const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __y)
{
    return lexicographical_compare(__x.begin(), __x.end(),
                                   __y.begin(), __y.end());
}


template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>&
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::operator=(const _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>& __x)
{
    if (this != &__x)
    {
        /// Note that _Key may be a constant type.
        clear();           ///先將需要賦值的樹清空
        _M_node_count = 0;
        _M_key_compare = __x._M_key_compare;    ///比較函數賦值
        if (__x._M_root() == 0)
        {
            _M_root() = 0;
            _M_leftmost() = _M_header;
            _M_rightmost() = _M_header;
        }
        else
        {
            _M_root() = _M_copy(__x._M_root(), _M_header);  ///複製整棵樹

            _M_leftmost() = _S_minimum(_M_root());              ///調整樹的狀態
            _M_rightmost() = _S_maximum(_M_root());
            _M_node_count = __x._M_node_count;
        }
    }
    return *this;
}

///v爲要插入的值,x爲要插入的位置,y爲x的父節點
template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::_M_insert(_Base_ptr __x_, _Base_ptr __y_, const _Value& __v)
{
    _Link_type __x = (_Link_type) __x_;
    _Link_type __y = (_Link_type) __y_;
    _Link_type __z;

    if (__y == _M_header || __x != 0 ||
            _M_key_compare(_KeyOfValue()(__v), _S_key(__y)))
    {
        __z = _M_create_node(__v);
        _S_left(__y) = __z;               /// also makes _M_leftmost() = __z
        ///    when __y == _M_header
        if (__y == _M_header)
        {
            _M_root() = __z;
            _M_rightmost() = __z;
        }
        else if (__y == _M_leftmost())
            _M_leftmost() = __z;   /// maintain _M_leftmost() pointing to min node
    }
    else
    {
        __z = _M_create_node(__v);
        _S_right(__y) = __z;
        if (__y == _M_rightmost())
            _M_rightmost() = __z;  /// maintain _M_rightmost() pointing to max node
    }
    _S_parent(__z) = __y;
    _S_left(__z) = 0;
    _S_right(__z) = 0;
    _Rb_tree_rebalance(__z, _M_header->_M_parent);
    ++_M_node_count;
    return iterator(__z);
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::insert_equal(const _Value& __v)    ///鍵值可重複插入
{
    _Link_type __y = _M_header;
    _Link_type __x = _M_root();

    while (__x != 0)       ///尋找合適的插入點(一定爲0),同時記錄插入點的父節點
    {
        __y = __x;
        __x = _M_key_compare(_KeyOfValue()(__v), _S_key(__x)) ?
              _S_left(__x) : _S_right(__x);
    }
    return _M_insert(__x, __y, __v);
}


template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
     bool>
     _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
     ::insert_unique(const _Value& __v)     ///鍵值不可重複插入,插入可能失敗
{
    _Link_type __y = _M_header;
    _Link_type __x = _M_root();
    bool __comp = true;

    while (__x != 0)      ///尋找可能的插入位置
    {
        __y = __x;
        __comp = _M_key_compare(_KeyOfValue()(__v), _S_key(__x));

        ///v小於x的鍵值時向左子樹移動,否則向右子樹移動,因此,如果已有重複
        ///鍵值存在,x最終一定位於重複鍵值所在節點的右子樹
        __x = __comp ? _S_left(__x) : _S_right(__x);

    }

    ///檢查是否可以插入(鍵值是否有重複)
    iterator __j = iterator(__y);

    if (__comp)       ///插入點是其父節點的左孩子
        if (__j == begin())
        {
            ///最左端結點,不可能位於某個節點的右子樹,因此可判定無重複鍵值,可插入
            return pair<iterator,bool>(_M_insert(__x, __y, __v), true);
        }
        else
        {
            --__j;   ///得到其父節點的直接前驅結點,若插入x,即成爲x的直接前驅結點
        }

    ///此時,j爲若插入x後x的直接前驅結點.
    if (_M_key_compare(_S_key(__j._M_node), _KeyOfValue()(__v)))
        return pair<iterator,bool>(_M_insert(__x, __y, __v), true);

    return pair<iterator,bool>(__j, false);
}

///不可重複插入,先在指定位置插入,若指定位置插入不合法,
///再試圖尋找合法位置插入
template <class _Key, class _Val, class _KeyOfValue,
class _Compare, class _Alloc>
typename _Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>::iterator
_Rb_tree<_Key, _Val, _KeyOfValue, _Compare, _Alloc>
::insert_unique(iterator __position, const _Val& __v)
{
    if (__position._M_node == _M_header->_M_left)   /// begin()
    {

        if (size() > 0 &&
                _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
        {
            /// first argument just needs to be non-null
            return _M_insert(__position._M_node, __position._M_node, __v);
        }
        else
        {
            return insert_unique(__v).first;
        }

    }
    else if (__position._M_node == _M_header)     /// end()
    {
        if (_M_key_compare(_S_key(_M_rightmost()), _KeyOfValue()(__v)))
            return _M_insert(0, _M_rightmost(), __v);
        else
            return insert_unique(__v).first;
    }
    else
    {
        iterator __before = __position;
        --__before;   ///找到插入位置的直接前驅
        if (_M_key_compare(_S_key(__before._M_node), _KeyOfValue()(__v))
                && _M_key_compare(_KeyOfValue()(__v), _S_key(__position._M_node)))
        {
            if (_S_right(__before._M_node) == 0)
                return _M_insert(0, __before._M_node, __v);
            else
                return _M_insert(__position._M_node, __position._M_node, __v);
            /// first argument just needs to be non-null
        }
        else
            return insert_unique(__v).first;
    }
}

template <class _Key, class _Val, class _KeyOfValue,
         class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Val,_KeyOfValue,_Compare,_Alloc>
::insert_equal(iterator __position, const _Val& __v)
{
    if (__position._M_node == _M_header->_M_left)   /// begin()
    {
        if (size() > 0 &&
                !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)))
            return _M_insert(__position._M_node, __position._M_node, __v);
        /// first argument just needs to be non-null
        else
            return insert_equal(__v);
    }
    else if (__position._M_node == _M_header)    /// end()
    {
        if (!_M_key_compare(_KeyOfValue()(__v), _S_key(_M_rightmost())))
            return _M_insert(0, _M_rightmost(), __v);
        else
            return insert_equal(__v);
    }
    else
    {
        iterator __before = __position;
        --__before;
        if (!_M_key_compare(_KeyOfValue()(__v), _S_key(__before._M_node))
                && !_M_key_compare(_S_key(__position._M_node), _KeyOfValue()(__v)))
        {
            if (_S_right(__before._M_node) == 0)
                return _M_insert(0, __before._M_node, __v);
            else
                return _M_insert(__position._M_node, __position._M_node, __v);
            /// first argument just needs to be non-null
        }
        else
            return insert_equal(__v);
    }
}

template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
template<class _II>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_equal(_II __first, _II __last)
{
    for ( ; __first != __last; ++__first)
        insert_equal(*__first);
}

template <class _Key, class _Val, class _KoV, class _Cmp, class _Alloc>
template<class _II>
void _Rb_tree<_Key,_Val,_KoV,_Cmp,_Alloc>
::insert_unique(_II __first, _II __last)
{
    for ( ; __first != __last; ++__first)
        insert_unique(*__first);
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
inline void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(iterator __position)
{
    _Link_type __y =
        (_Link_type) _Rb_tree_rebalance_for_erase(__position._M_node,
                _M_header->_M_parent,
                _M_header->_M_left,
                _M_header->_M_right);
    destroy_node(__y);
    --_M_node_count;
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::erase(const _Key& __x)
{
    pair<iterator,iterator> __p = equal_range(__x);
    size_type __n = 0;
    distance(__p.first, __p.second, __n);
    erase(__p.first, __p.second);
    return __n;
}

///複製以__x作爲根節點的子樹,得到的樹作爲__p的子樹
template <class _Key, class _Val, class _KoV, class _Compare, class _Alloc>
typename _Rb_tree<_Key, _Val, _KoV, _Compare, _Alloc>::_Link_type
_Rb_tree<_Key,_Val,_KoV,_Compare,_Alloc>
::_M_copy(_Link_type __x, _Link_type __p)
{
    ///整棵樹所有的右子樹都遞歸複製,所有的左子樹都直接複製
    /// structural copy.  __x and __p must be non-null.
    _Link_type __top = _M_clone_node(__x);
    __top->_M_parent = __p;

    try
    {
        if (__x->_M_right)
            __top->_M_right = _M_copy(_S_right(__x), __top);   ///遞歸複製x的右子樹

        __p = __top;
        __x = _S_left(__x);

        ///直接複製x的左子樹
        while (__x != 0)
        {
            _Link_type __y = _M_clone_node(__x);
            __p->_M_left = __y;
            __y->_M_parent = __p;

            if (__x->_M_right)
                __y->_M_right = _M_copy(_S_right(__x), __y);  ///繼續遞歸複製右子樹

            __p = __y;
            __x = _S_left(__x);        ///x指向其左孩子,循環複製其左子樹
        }
    }
    catch(...)
    {
        _M_erase(__top);
    }

    return __top;
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::_M_erase(_Link_type __x)
{
    /// erase without rebalancing
    while (__x != 0)
    {
        _M_erase(_S_right(__x));    ///遞歸刪除右子樹

        ///循環刪除左子樹
        _Link_type __y = _S_left(__x);
        destroy_node(__x);
        __x = __y;
    }
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(iterator __first, iterator __last)
{
    if (__first == begin() && __last == end())
        clear();
    else
        while (__first != __last) erase(__first++);
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
void _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::erase(const _Key* __first, const _Key* __last)
{
    while (__first != __last) erase(*__first++);
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k)
{
    _Link_type __y = _M_header;      /// Last node which is not less than __k.
    _Link_type __x = _M_root();      /// Current node.

    while (__x != 0)
    {
        if (!_M_key_compare(_S_key(__x), __k))   ///k <= x的鍵值時
            __y = __x, __x = _S_left(__x);
        else                                   ///k > x的鍵值時
            __x = _S_right(__x);
    }

    ///至此,x爲k的可插入點,y爲x的直接前驅,如果k存在,則j不可能爲end(),
    ///而且應有j指向結點的鍵值和k相等
    iterator __j = iterator(__y);
    return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
           end() : __j;
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::find(const _Key& __k) const
{
    _Link_type __y = _M_header;
    _Link_type __x = _M_root();

    while (__x != 0)
    {
        if (!_M_key_compare(_S_key(__x), __k))
            __y = __x, __x = _S_left(__x);
        else
            __x = _S_right(__x);
    }
    const_iterator __j = const_iterator(__y);
    return (__j == end() || _M_key_compare(__k, _S_key(__j._M_node))) ?
           end() : __j;
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::size_type
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::count(const _Key& __k) const
{
    pair<const_iterator, const_iterator> __p = equal_range(__k);
    size_type __n = 0;
    distance(__p.first, __p.second, __n);
    return __n;
}

///返回"最小的"鍵值和k相同結點
template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::lower_bound(const _Key& __k)
{
    _Link_type __y = _M_header;
    _Link_type __x = _M_root();

    while (__x != 0)
    {
        ///當__x的鍵值 == k時,尋找"更小的" 鍵值等於k的__x
        if (!_M_key_compare(_S_key(__x), __k))
            __y = __x, __x = _S_left(__x);
        else                                 /// x的鍵值 < k
            __x = _S_right(__x);
    }

    return iterator(__y);
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::lower_bound(const _Key& __k) const
{
    _Link_type __y = _M_header;
    _Link_type __x = _M_root();

    while (__x != 0)
        if (!_M_key_compare(_S_key(__x), __k))
            __y = __x, __x = _S_left(__x);
        else
            __x = _S_right(__x);

    return const_iterator(__y);
}

///返回"最大的"鍵值和k相同結點的直接後繼
template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::upper_bound(const _Key& __k)
{
    _Link_type __y = _M_header;
    _Link_type __x = _M_root();

    while (__x != 0)
    {
        if (_M_key_compare(__k, _S_key(__x)))  ///k小於x的鍵值
            __y = __x, __x = _S_left(__x);
        else       ///當__x的鍵值 == k時,尋找"更大的" __x
            __x = _S_right(__x);
    }
    return iterator(__y);
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::const_iterator
_Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
::upper_bound(const _Key& __k) const
{
    _Link_type __y = _M_header;
    _Link_type __x = _M_root();

    while (__x != 0)
        if (_M_key_compare(__k, _S_key(__x)))
            __y = __x, __x = _S_left(__x);
        else
            __x = _S_right(__x);

    return const_iterator(__y);
}

template <class _Key, class _Value, class _KeyOfValue,
         class _Compare, class _Alloc>
inline
pair<typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator,
     typename _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::iterator>
     _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>
     ::equal_range(const _Key& __k)
{
    return pair<iterator, iterator>(lower_bound(__k), upper_bound(__k));
}

template <class _Key, class _Value, class _KoV, class _Compare, class _Alloc>
inline
pair<typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator,
     typename _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>::const_iterator>
     _Rb_tree<_Key, _Value, _KoV, _Compare, _Alloc>
     ::equal_range(const _Key& __k) const
{
    return pair<const_iterator,const_iterator>(lower_bound(__k),
            upper_bound(__k));
}

///計算[__node,__root]之間黑色結點的個數,採用遞歸上溯法
inline int
__black_count(_Rb_tree_node_base* __node, _Rb_tree_node_base* __root)
{
    if (__node == 0)
        return 0;
    else
    {
        int __bc = __node->_M_color == _S_rb_tree_black ? 1 : 0;

        if (__node == __root)
            return __bc;
        else
            return __bc + __black_count(__node->_M_parent, __root);
    }
}

template <class _Key, class _Value, class _KeyOfValue,
class _Compare, class _Alloc>
bool _Rb_tree<_Key,_Value,_KeyOfValue,_Compare,_Alloc>::__rb_verify() const
{
    if (_M_node_count == 0 || begin() == end())
        return _M_node_count == 0 && begin() == end() &&
               _M_header->_M_left == _M_header && _M_header->_M_right == _M_header;

    int __len = __black_count(_M_leftmost(), _M_root());
    for (const_iterator __it = begin(); __it != end(); ++__it)
    {
        _Link_type __x = (_Link_type) __it._M_node;
        _Link_type __L = _S_left(__x);
        _Link_type __R = _S_right(__x);

        if (__x->_M_color == _S_rb_tree_red)    ///檢驗紅色結點是否有紅色孩子
            if ((__L && __L->_M_color == _S_rb_tree_red) ||
                    (__R && __R->_M_color == _S_rb_tree_red))
                return false;

        ///檢驗鍵值是否不大於其左孩子
        if (__L && _M_key_compare(_S_key(__x), _S_key(__L)))
            return false;

        ///檢驗鍵值是否不小於其右孩子
        if (__R && _M_key_compare(_S_key(__R), _S_key(__x)))
            return false;

        ///檢驗左右孩子到根節點路徑的黑色結點數目是否相同
        if (!__L && !__R && __black_count(__x, _M_root()) != __len)
            return false;
    }

    ///檢驗最大、小值指針指向是否正確
    if (_M_leftmost() != _Rb_tree_node_base::_S_minimum(_M_root()))
        return false;

    if (_M_rightmost() != _Rb_tree_node_base::_S_maximum(_M_root()))
        return false;

    return true;
}

紅黑樹是STL中map/set的內部數據結構,紅黑樹是一種特殊的二叉查找樹。

首先看什麼是二叉查找樹:

(1)若左子樹不爲空,則左子樹的所有節點均小於根節點

(2)若右子樹不爲空,則右子樹的所有節點均大於根節點

(3)左右子樹也分別爲二叉查找樹

(4)節點中沒有重複的元素

二叉查找樹的插入、查找最好時間複雜度爲lg(N) , 最差的時間複雜度爲O(N)

再看紅黑樹:

紅黑樹在二叉查找樹的基礎上增加了一下特性:

(1)所有的節點都是紅/黑色的

(2)根節點是黑色的

(3)空節點爲黑色的

(4)若一個節點是紅色的,則它的兩個葉子節點都是黑色的

(5)從任意節點到其任意葉子節點的路徑中經過的黑色節點數是相等的

這五個性質強制了紅黑樹的關鍵性質: 從根到葉子的最長的可能路徑不多於最短的可能路徑的兩倍長。爲什麼呢?性質4暗示着任何一個簡單路徑上不能有兩個毗連的紅色節點,這樣,最短的可能路徑全是黑色節點,最長的可能路徑有交替的紅色和黑色節點。同時根據性質5知道:所有最長的路徑都有相同數目的黑色節點,這就表明了沒有路徑能多於任何其他路徑的兩倍長。

這樣,紅黑樹的最壞情況和最好情況基本是一致的,插入/查找的時間複雜度都爲lg(N)

這樣的一顆紅黑樹只需要進行中序遍歷就可以實現有序訪問,這也是stl中map/set爲什麼是自動有序的原因。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章