JDK線程池的原理

文章目錄

1.線程池的概念

1.我們這裏說的線程池主要是JDK中提供的線程池;
2.線程池,主要是基於頻繁的創建和銷燬線程比較耗費資源,所以我們在項目啓動的過程中,提前創建包含一定數量線程的
  線程池(池子)3.後面請求過來的時候,直接從線程池中獲取可用的線程即可;  

2.線程池的優點

2.1.減少資源的消耗

1.這裏減少資源的消耗,主要是由於提供了線程池,一定數量上,可以減少因爲線程的創建和銷燬而帶來的CPU內存資源消耗;

2.2.提高請求訪問速度(響應速度)

1.因爲我們有了線程池,減少了線程的創建和銷燬時間,這樣響應速度和訪問速度都能夠提高;

2.3.便於對線程的管理

1.因爲有了線程池,線程的數量是穩定的,保證了系統的穩定性
2.同時,我們可以便於對線程池中的線程進行統一的管理,調優等操作;

3.JDK API

3.1.線程池對象ThreadPoolExecutor(ExecutorService子類)

1.這裏我們着重看一下構造一個線程池ThreadPoolExecutor所需要的因子參數;
2.下面是對參數的介紹
int corePoolSize, 									#核心線程數量
int maximumPoolSize,								#最大線程數量
long keepAliveTime,									#線程存活時間
TimeUnit unit,											#線程存活時間單位,keepAliveTime的單位
BlockingQueue<Runnable> workQueue,  #存儲請求任務的線程隊列
ThreadFactory threadFactory,
RejectedExecutionHandler handler

在這裏插入圖片描述

3.2.創建線程池的核心工具類對象-Executors

1.首先 Executors是一個創建線程池的工具類;
2.Executors中提供了一些列靜態的創建線程池對象ExecutorService;的一系列的方法,返回線程池ExecutorService;
3.這裏我們先簡單的介紹一下ThreadPoolExecutor對象(ExecutorService子類)  

3.3.Executors 創建線程池的核心方法

3.3.1.創建只有一個線程的線程池:newSingleThreadExecutor

public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
}

3.3.2.創建固定線程數量的線程池:newFixedThreadPool

    public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>(),
                                      threadFactory);
    }

3.3.3.創建沒有限制數量的線程池:newCachedThreadPool

   public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>(),
                                      threadFactory);
    }
1.這裏的線程數量所謂沒有限制,是一個相對值,因爲最大值爲2^32-1,幾乎是一個夠用的一個數量
2.線程池會根據實際的需要去自動的調整線程池的大小;
3.60秒後線程自動被回收;

3.3.4.週期性任務的調度的線程池:ScheduledThreadPoolExecutor

    public static ScheduledExecutorService newScheduledThreadPool(
            int corePoolSize, ThreadFactory threadFactory) {
        return new ScheduledThreadPoolExecutor(corePoolSize, threadFactory);
    }

1.所謂週期性任務的調度,週期性的執行隊列中的請求

4.多線程使用引入樣例

package com.gaoxinfu.demo.jdk.rt.java.util.concurrent;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

/**
 * @Description:
 * @Author: gaoxinfu
 * @Date: 2020-05-20 14:07
 */
public class ExecutorsDemo {
    public static void main(String[] args) {

        ExecutorService threadPoolExecutor= Executors.newCachedThreadPool();

        for (int i = 0; i < 10; i++) {
            final int index = i;
            try {
                Thread.sleep(index * 1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }

            threadPoolExecutor.execute(new Runnable() {
                @Override
                public void run() {
                    System.out.println("index = "+index);
                }
            });
        }
    }
}

4.多線程執行流程

4.1.線程池使用入口:ThreadPoolExecutor.execute

1.從上面的樣例,我們可以知道,線程池使用的入口爲:
  ThreadPoolExecutor.execute(Runnable runnable)

4.2.線程池ThreadPoolExecutor構造方法參數

 /**
     * Creates a new {@code ThreadPoolExecutor} with the given initial
     * parameters and default thread factory.
     * 
     * @param corePoolSize the number of threads to keep in the pool, even
     *        if they are idle, unless {@code allowCoreThreadTimeOut} is set
     * @param maximumPoolSize the maximum number of threads to allow in the
     *        pool
     * @param keepAliveTime when the number of threads is greater than
     *        the core, this is the maximum time that excess idle threads
     *        will wait for new tasks before terminating.
     * @param unit the time unit for the {@code keepAliveTime} argument
     * @param workQueue the queue to use for holding tasks before they are
     *        executed.  This queue will hold only the {@code Runnable}
     *        tasks submitted by the {@code execute} method.
     * @param handler the handler to use when execution is blocked
     *        because the thread bounds and queue capacities are reached
     * @throws IllegalArgumentException if one of the following holds:<br>
     *         {@code corePoolSize < 0}<br>
     *         {@code keepAliveTime < 0}<br>
     *         {@code maximumPoolSize <= 0}<br>
     *         {@code maximumPoolSize < corePoolSize}
     * @throws NullPointerException if {@code workQueue}
     *         or {@code handler} is null
     */  
public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              RejectedExecutionHandler handler) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
             Executors.defaultThreadFactory(), handler);
}

4.2.1.corePoolSize:核心線程池數量

1.corePoolSize:我們可以簡單理解就是應用運行的過程中,需要保證的線程池中一個至少應該運行的線程的數量;
2.但是這裏有一個特殊情況:就是我們

4.2.2.maximumPoolSize:最大線程池數量

4.2.3.keepAliveTime:線程空閒時間長度

4.2.4.unit:線程空閒時間長度單位

4.2.5.workQueue:線程池中阻塞待處理的隊列

4.2.6.handler:線程池無法處理新的請求之後的拒絕策略

4.3.線程整體執行流程圖

4.3.1.線程池內部結構解析

在這裏插入圖片描述

1.corePoolSize實際上我們可以認爲是隸屬於maxmumPoolSize的子集
2.WorkerQueue是一個隊列,這個隊列主要是基於在新的請求進來之後,線程池數量大於corePoolSize時,會進去這個
  WorkerQueue隊列

4.3.2.線程池流程判斷

在這裏插入圖片描述

1.請求過來之後,進去線程池之後,首先查看核心線程池當前是否有空餘的線程,如果有,則創建線程進行執行;
2.如果核心線程池corePoolSize沒有多餘的線程,那麼判斷WorkerQueue隊列是否已經滿;
  如果已滿,那麼進行判斷進行步驟3的處理;
  如果未滿,進入WorkerQueue隊列,等待線程池中空餘線程Thread的處理;
3.判斷maxmumPoolSize是否已滿
     如果沒有剩餘線程,直接執行線程池指定的拒絕策略;
     如果還有剩餘線程,直接創建線程執行的任務,處理當前的請求;

4.3.3.線程池的狀態

    /**
     * The main pool control state, ctl, is an atomic integer packing
     * two conceptual fields
     *   workerCount, indicating the effective number of threads
     *   runState,    indicating whether running, shutting down etc
     *
     * In order to pack them into one int, we limit workerCount to
     * (2^29)-1 (about 500 million) threads rather than (2^31)-1 (2
     * billion) otherwise representable. If this is ever an issue in
     * the future, the variable can be changed to be an AtomicLong,
     * and the shift/mask constants below adjusted. But until the need
     * arises, this code is a bit faster and simpler using an int.
     *
     * The workerCount is the number of workers that have been
     * permitted to start and not permitted to stop.  The value may be
     * transiently different from the actual number of live threads,
     * for example when a ThreadFactory fails to create a thread when
     * asked, and when exiting threads are still performing
     * bookkeeping before terminating. The user-visible pool size is
     * reported as the current size of the workers set.
     *
     * The runState provides the main lifecycle control, taking on values:
     *
     *   RUNNING:  Accept new tasks and process queued tasks
     *   SHUTDOWN: Don't accept new tasks, but process queued tasks
     *   STOP:     Don't accept new tasks, don't process queued tasks,
     *             and interrupt in-progress tasks
     *   TIDYING:  All tasks have terminated, workerCount is zero,
     *             the thread transitioning to state TIDYING
     *             will run the terminated() hook method
     *   TERMINATED: terminated() has completed
     *
     * The numerical order among these values matters, to allow
     * ordered comparisons. The runState monotonically increases over
     * time, but need not hit each state. The transitions are:
     *
     * RUNNING -> SHUTDOWN
     *    On invocation of shutdown(), perhaps implicitly in finalize()
     * (RUNNING or SHUTDOWN) -> STOP
     *    On invocation of shutdownNow()
     * SHUTDOWN -> TIDYING
     *    When both queue and pool are empty
     * STOP -> TIDYING
     *    When pool is empty
     * TIDYING -> TERMINATED
     *    When the terminated() hook method has completed
     *
     * Threads waiting in awaitTermination() will return when the
     * state reaches TERMINATED.
     *
     * Detecting the transition from SHUTDOWN to TIDYING is less
     * straightforward than you'd like because the queue may become
     * empty after non-empty and vice versa during SHUTDOWN state, but
     * we can only terminate if, after seeing that it is empty, we see
     * that workerCount is 0 (which sometimes entails a recheck -- see
     * below).
     */
    // runState is stored in the high-order bits
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

4.3.3.1.線程池的幾種狀態介紹

4.3.3.1.1.RUNNING:接收新任務,同時處理已經在隊列中的任務
RUNNING:  Accept new tasks and process queued tasks
4.3.3.1.2.SHUTDOWN :不接受新任務,但是處理已經在隊列中的任務
SHUTDOWN:Don't accept new tasks, but process queued tasks
4.3.3.1.3.STOP狀態:不接受新任務,不處理隊列中任務,中斷正在進行的任務
Don't accept new tasks, don't process queued tasks,and interrupt in-progress tasks
4.3.3.1.4.TIDYING狀態:所有的任務終止,WorkerCount爲0,進入TIDYING狀態,開始調用terminated()方法
TIDYING:All tasks have terminated, workerCount is zero,
                  the thread transitioning to state TIDYING
                  will run the terminated() hook method
4.3.3.1.5.TERMINATED :terminated() 調用結束的時候狀態
TERMINATED:terminated() has completed

4.3.3.2.線程池狀態的變化關係

     * RUNNING -> SHUTDOWN
     *    On invocation of shutdown(), perhaps implicitly in finalize()
     * (RUNNING or SHUTDOWN) -> STOP
     *    On invocation of shutdownNow()
     * SHUTDOWN -> TIDYING
     *    When both queue and pool are empty
     * STOP -> TIDYING
     *    When pool is empty
     * TIDYING -> TERMINATED
     *    When the terminated() hook method has completed

在這裏插入圖片描述

1.應用啓動的時候,線程池就進入了RUNNING狀態;
2.RUNNING狀態下,一旦調用shutdown()方法,進入SHUTDOWN狀態
3.TIDYING 翻譯爲整理,爲調用terminated()之前的一個狀態

4.3.3.3.線程池狀態的二進制標示介紹

    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

轉換爲二進制 CPU內存中的存儲形式

    @Test
    public void ctl(){
        System.out.println(Integer.toBinaryString(-1));
        System.out.println("RUNNING    = " +Integer.toBinaryString((-1 << (Integer.SIZE - 3))));
        System.out.println("SHUTDOWN   = " +Integer.toBinaryString((0 << (Integer.SIZE - 3))));
        System.out.println("STOP       = " +Integer.toBinaryString((1 << (Integer.SIZE - 3))));
        System.out.println("TIDYING    = " +Integer.toBinaryString((2 << (Integer.SIZE - 3))));
        System.out.println("TERMINATED = " +Integer.toBinaryString((3 << (Integer.SIZE - 3))));
    }
11111111111111111111111111111111
RUNNING    = 11100000000000000000000000000000   #相當於 011100000 00000000 00000000 00000000
SHUTDOWN   = 0                                  #相當於 000000000 00000000 00000000 00000000
STOP       = 100000000000000000000000000000     #相當於 000100000 00000000 00000000 00000000
TIDYING    = 1000000000000000000000000000000    #相當於 001000000 00000000 00000000 00000000
TERMINATED = 1100000000000000000000000000000    #相當於 001100000 00000000 00000000 00000000

第一位是符號位,也就是這5個狀態是通過高三位的保存了狀態
關於位移有符號位移運算的介紹可以參考下面的地址
https://blog.csdn.net/u014636209/article/details/106405242

4.3.4.從源碼看流程

		/**
     * Executes the given task sometime in the future.  The task
     * may execute in a new thread or in an existing pooled thread.
     *
     * If the task cannot be submitted for execution, either because this
     * executor has been shutdown or because its capacity has been reached,
     * the task is handled by the current {@code RejectedExecutionHandler}.
     *
     * @param command the task to execute
     * @throws RejectedExecutionException at discretion of
     *         {@code RejectedExecutionHandler}, if the task
     *         cannot be accepted for execution
     * @throws NullPointerException if {@code command} is null
     */
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        /*
         * Proceed in 3 steps:
         *
         * 1. If fewer than corePoolSize threads are running, try to
         * start a new thread with the given command as its first
         * task.  The call to addWorker atomically checks runState and
         * workerCount, and so prevents false alarms that would add
         * threads when it shouldn't, by returning false.
         *
         * 2. If a task can be successfully queued, then we still need
         * to double-check whether we should have added a thread
         * (because existing ones died since last checking) or that
         * the pool shut down since entry into this method. So we
         * recheck state and if necessary roll back the enqueuing if
         * stopped, or start a new thread if there are none.
         *
         * 3. If we cannot queue task, then we try to add a new
         * thread.  If it fails, we know we are shut down or saturated
         * and so reject the task.
         */
      	//獲取當前線程池的狀態
        int c = ctl.get();
      
        //1.判斷Worker(正在運行的線程)數量是否小於核心線程池的數量
        if (workerCountOf(c) < corePoolSize) {
            //核心線程池還有空閒的線程,將當前請求加入到Worker之中,啓動新的線程
            //具體addWorker的方法 可以查看4.3.3.1
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        
        //2.
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            reject(command);
    }

4.3.4.1.我們先來了解一個AtomicInteger ctl變量

    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

     // Packing and unpacking ctl
    private static int runStateOf(int c)     { 
        return c & ~CAPACITY; 
    }
    private static int workerCountOf(int c)  { 
        return c & CAPACITY; 
    }
    private static int ctlOf(int rs, int wc) { 
        return rs | wc; 
    }
4.3.4.1.1.ctlOf的兩個屬性:線程池的運行狀態和線程池的Worker數量
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

    private static int ctlOf(int rs, int wc) { 
        return rs | wc; 
    }
1.首先,使用AtomicInteger類型的變量存儲了線程池的兩個屬性:線程池的運行狀態和線程池的Worker數量

我們前面看知道線程池的一個狀態的二進制存儲的問題,如下

RUNNING    = 11100000000000000000000000000000   #相當於 011100000 00000000 00000000 00000000
SHUTDOWN   = 0                                  #相當於 000000000 00000000 00000000 00000000
STOP       = 100000000000000000000000000000     #相當於 000100000 00000000 00000000 00000000
TIDYING    = 1000000000000000000000000000000    #相當於 001000000 00000000 00000000 00000000
TERMINATED = 1100000000000000000000000000000    #相當於 001100000 00000000 00000000 00000000

從上面,可以看到,第一位爲符號位(0標示正) 然後第二位到第四位保存類線程池的狀態
我們的Worker線程池的數量估計認爲3*8+5=29,也就是29^2-1 個
那麼可以看出,前面四個是線程池的狀態,後面29個二進制可以認爲是Worker數量
這樣我們就可以對他倆的二進制進行運算,可以算的線程池的狀態或者Worker的數量,具體見下面的分析

在這裏插入圖片描述

4.3.4.1.2.獲取線程池的狀態:runStateOf
 private static int runStateOf(int c)     { 
        return c & ~CAPACITY; 
 }
1.因爲我們知道CAPACITY可以認爲是Worker的最大數量
  00011111 11111111 11111111 11111111
  按位取反之後
  11100000 00000000 00000000 00000000
  然後跟前面存儲的線程池的狀態和Worker數量的字段ctl去進行按位與運算
  因爲我們上面按位取反之後的二進制後面29位都是0,
  所以進行按位與運算的時候,肯定只剩下高位四位(加上符號位),實際上就是我們線程池的狀態
4.3.4.1.3.獲取Worker線程的數量
  private static int workerCountOf(int c)  { 
        return c & CAPACITY; 
    }
1.因爲前面我們說過CAPACITY,二進制內存中   00011111 11111111 11111111 11111111
1.這個理解上就比較簡單了,因爲我們Worker的數量的高三位都是0,然後CAPACITY,低位都是1
  進行按位與運算之後,相同爲1,那麼結果爲Worker的數量了

4.3.4.2.addWorker(Runnable firstTask, boolean core)解析

		/**
		 * 大家注意下,這裏的Worker 其實就是一個線程,這個線程執行的請求的任務
		 *
     * Checks if a new worker can be added with respect to current
     * pool state and the given bound (either core or maximum). If so,
     * the worker count is adjusted accordingly, and, if possible, a
     * new worker is created and started, running firstTask as its
     * first task. This method returns false if the pool is stopped or
     * eligible to shut down. It also returns false if the thread
     * factory fails to create a thread when asked.  If the thread
     * creation fails, either due to the thread factory returning
     * null, or due to an exception (typically OutOfMemoryError in
     * Thread.start()), we roll back cleanly.
     * 翻譯:
     * 根據當前線程池的狀態和給定的線程池的範圍(核心線程池數量和最大的線程池數量)檢查是否可以創建新Worker;
     * 如果可以,那麼WorkerCount會相應的調整,同時,新創建的Worker會執行我們傳遞進來的firstTask任務作爲
     * 他的第一個任務(這句話,我們可以認爲,新創建的Worker實際上就是線程池中一個線程,一旦firstTask任務
     * 結束,實際上這個線程池中Worker線程並不會消亡,他會繼續處理新的任務請求);
     * 如果線程池處理停止狀態或者SHUTDOWN狀態,該方法將返回false,表示創建任務失敗;
     * 如果線程創建失敗,不管是由於線程工廠返回null(線程創建失敗)還是OOM內存溢出導致的異常等,
     * 我們都將徹底回滾當前操作;
     *
     * @param firstTask the task the new thread should run first (or
     * null if none). Workers are created with an initial first task
     * (in method execute()) to bypass queuing when there are fewer
     * than corePoolSize threads (in which case we always start one),
     * or when the queue is full (in which case we must bypass queue).
     * Initially idle threads are usually created via
     * prestartCoreThread or to replace other dying workers.
     *
     * @param core if true use corePoolSize as bound, else
     * maximumPoolSize. (A boolean indicator is used here rather than a
     * value to ensure reads of fresh values after checking other pool
     * state).
     * @return true if successful
     */
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            /**
            
            *1.rs >= SHUTDOWN 說明當前線程不是RUNNING狀態
            *2.! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty())
            *
            * 簡單這兩種條件:
            *   1.如果當前線程池的狀態是RUNNINN狀態,可以進行線程的處理
            *   2.如果是SHUTDOWN狀態,並且當前任務是空,並且隊列中非空,也是可以進行線程的處理
            *   這裏線程的處理,就是Worker任務的線程處理
            *   所以下面的if判斷是基於上面兩種都不是的情況下,直接返回false,不進行線程任務的處理
            */
            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&firstTask == null &&! workQueue.isEmpty()))
                return false;

            for (;;) {
                int wc = workerCountOf(c);//獲取當前Worker線程的數量
                //如果當前Worker線程任務已經最大值或者大於臨街corePoolSize|maximumPoolSize 
                if (wc >= CAPACITY ||wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                //如果Worker線程任務比臨界corePoolSize|maximumPoolSize小,那麼WorkerCount+1
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                //下面的操作主要是基於我們上面compareAndIncrementWorkerCount
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||(rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    //這裏啓動的時候會去調用Worker的Run方法,本質上是runWorker方法
                    //runWorker見下面分析
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

4.3.4.3.runWorker方法解析

    /**
     * Main worker run loop.  Repeatedly gets tasks from queue and
     * executes them, while coping with a number of issues:
     *
     * 1. We may start out with an initial task, in which case we
     * don't need to get the first one. Otherwise, as long as pool is
     * running, we get tasks from getTask. If it returns null then the
     * worker exits due to changed pool state or configuration
     * parameters.  Other exits result from exception throws in
     * external code, in which case completedAbruptly holds, which
     * usually leads processWorkerExit to replace this thread.
     *
     * 2. Before running any task, the lock is acquired to prevent
     * other pool interrupts while the task is executing, and then we
     * ensure that unless pool is stopping, this thread does not have
     * its interrupt set.
     *
     * 3. Each task run is preceded by a call to beforeExecute, which
     * might throw an exception, in which case we cause thread to die
     * (breaking loop with completedAbruptly true) without processing
     * the task.
     *
     * 4. Assuming beforeExecute completes normally, we run the task,
     * gathering any of its thrown exceptions to send to afterExecute.
     * We separately handle RuntimeException, Error (both of which the
     * specs guarantee that we trap) and arbitrary Throwables.
     * Because we cannot rethrow Throwables within Runnable.run, we
     * wrap them within Errors on the way out (to the thread's
     * UncaughtExceptionHandler).  Any thrown exception also
     * conservatively causes thread to die.
     *
     * 5. After task.run completes, we call afterExecute, which may
     * also throw an exception, which will also cause thread to
     * die. According to JLS Sec 14.20, this exception is the one that
     * will be in effect even if task.run throws.
     *
     * The net effect of the exception mechanics is that afterExecute
     * and the thread's UncaughtExceptionHandler have as accurate
     * information as we can provide about any problems encountered by
     * user code.
     *
     * @param w the worker
     */
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            //這裏的worker會一直運行,首先判斷當前的firstTask是否爲空
            //如果不爲空,執行該任務,如果爲空,getTask那麼去WorkerQueue裏拿一個
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章