HashMap源碼分析之構造函數及部分數據操作相關方法

“在介紹HashMap之前,爲了方便更清楚地理解源碼,先大致說說HashMap的實現原理,
	 HashMap 是基於數組 + 鏈表實現的, 首先HashMap就是一個大數組,在這個數組中,通過hash值去尋對應位置的元素, 如果遇到多個元素的hash值一樣,那麼怎麼保存,這就引入了鏈表,在同一個hash的位置,保存多個元素(通過鏈表關聯起來)。HashMap 所實現的基於<key, value>的鍵值對形式,是由其內部內Entry實現。”

Entry,是一個靜態類,實現Map.Entry< K ,V>,通過他可以構成一個單向鏈表,只是一個內部類。

HashMap類繼承了AbstractMap父類,實現Map,Cloneable, Serializble接口。

public class HashMAp<K,V> extends AbstractMap<K,V>
	implements Map<K,V>, Cloneable, Serializable
  1. serialVersionUID叫序列化ID 先擺着:
    java對象序列化的意思就是將對象的狀態轉化成字節流,以後可以通過這些值再生成相同狀態的對象。對象序列化是對象持久化的一種實現方法,它是將對象的屬性和方法轉化爲一種序列化的形式用於存儲和傳輸。反序列化就是根據這些保存的信息重建對象的過程。
    序列化:將java對象轉化爲字節序列的過程。
    反序列化:將字節序列轉化爲java對象的過程。
  2. 負載因子:
    會影響HashMap性能
    首先回憶HashMap的數據結構,
    1. 我們都知道有序數組存儲數據,對數據的索引效率都很高,但是插入和刪除就會有性能瓶頸(回憶ArrayList)
    2. 鏈表存儲數據,要一次比較元素來檢索出數據,所以索引效率低,但是插入和刪除效率高(回憶LinkedList),
      兩者取長補短就產生了哈希散列這種存儲方式,也就是HashMap的存儲邏輯.
      而負載因子表示一個散列表的空間的使用程度,有這樣一個公式:initailCapacity*loadFactor=HashMap的容量。

所以負載因子越大則散列表的裝填程度越高,也就是能容納更多的元素,元素多了,鏈表大了,所以此時索引效率就會降低。
反之,負載因子越小則鏈表中的數據量就越稀疏,此時會對空間造成浪費,但是此時索引效率高。
官方操作一波0.75f,咱也不知道爲啥哈哈哈,效率高唄。

JDK1.8 開始HashMap的實現是 數組+鏈表+紅黑樹

	//序列化ID
	private static final long serialVersionUID = 362498820763181265L;
	// 初始容量16
	static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; 
    //最大容量2^30
    static final int MAXIMUM_CAPACITY = 1 << 30;  
    //默認負載因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    //當鏈表達到8時轉化爲紅黑樹
    static final int TREEIFY_THRESHOLD = 8;
	//當紅黑樹節點數小於6時,轉化爲鏈表
    static final int UNTREEIFY_THRESHOLD = 6;
   /**    
   * 這個字段決定了當hash表的至少大小爲多少時,鏈表才能進行樹化。這個設計時合理的,
   * 因爲當hash表的大小很小時,這時候表所需的空間還不多,可以犧牲空間減少時間,所以這個情況下
   * 當存儲的節點過多時,最好的辦法是調整表的大小,使其增大,而不是將鏈表樹化。
	*/
    static final int MIN_TREEIFY_CAPACITY = 64;

下面介紹鍵值在HashMap中的存儲形式。

 static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;			//hash的value
        final K key;			//key
        V value;				//value 的 value值
        Node<K,V> next;
        //構造函數
        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
//Entry的get方法、toString方法
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }

計算hashCode中key和value異或值,將value值更改,返回原來的值

 		public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

判斷地址值,判斷o是否爲Map.Entry的實例,判斷類型和鍵值。

		public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }

hash(Object key)

	static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

先獲取到key的hashCode,然後進行移位再進行異或運算,複雜操作原因爲了減少hash衝突。
“ 如果惡意程序知道我們用的是Hash算法,則在純鏈表情況下,它能夠發送大量請求導致哈希碰撞,然後不停訪問這些key導致HashMap忙於進行線性查找,最終陷入癱瘓,即形成了拒絕服務攻擊(DoS)。
關於Java 8中的hash函數,原理和Java 7中基本類似。Java 8中這一步做了優化,只做一次16位右位移異或混合,而不是四次,但原理是不變的。”

comparableClassFor(Object x)

    static Class<?> comparableClassFor(Object x) {
        if (x instanceof Comparable) {
            Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
            if ((c = x.getClass()) == String.class) // bypass checks
                return c;
            if ((ts = c.getGenericInterfaces()) != null) {
                for (int i = 0; i < ts.length; ++i) {
                    if (((t = ts[i]) instanceof ParameterizedType) &&
                        ((p = (ParameterizedType)t).getRawType() ==
                         Comparable.class) &&
                        (as = p.getActualTypeArguments()) != null &&
                        as.length == 1 && as[0] == c) // type arg is c
                        return c;
                }
            }
        }
        return null;
    }

comparableClassFor(Object x)方法,當x的類型爲X,且X直接實現了Comparable接口(比較類型必須爲X類本身)時,返回x的運行時類型;否則返回null。

compareComparables(Class<?> kc, Object k, Object x)

    @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
    static int compareComparables(Class<?> kc, Object k, Object x) {
        return (x == null || x.getClass() != kc ? 0 :
                ((Comparable)k).compareTo(x));
    }

如果x的類型爲kc,則返回k.compareTo(x),否則返回0.

tableSizeFor(int cap)

    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1; // 將n和n右移1位的值進行或運算,將結果賦值給n
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }

返回大於等於cap的最小的二次冪數值。

    /**
    存儲鍵值對的數組,一般是2的冪
     * The table, initialized on first use, and resized as
     * necessary. When allocated, length is always a power of two.
     * (We also tolerate length zero in some operations to allow
     * bootstrapping mechanics that are currently not needed.)
     * 存儲鍵值對的數組,一般是2的冪
     */
    transient Node<K,V>[] table;

    /**
     * Holds cached entrySet(). Note that AbstractMap fields are used
     * for keySet() and values().
     * 鍵值對緩存,它們的映射關係集合保存在entrySet中。
     * 即使Key在外部修改導致hashCode變化,緩存中還可以找到映射關係
     */
    transient Set<Map.Entry<K,V>> entrySet;

    /**
     * The number of key-value mappings contained in this map.
     * 鍵值對的實際個數
     */
    transient int size;

    /**
     * The number of times this HashMap has been structurally modified
     * Structural modifications are those that change the number of mappings in
     * the HashMap or otherwise modify its internal structure (e.g.,
     * rehash).  This field is used to make iterators on Collection-views of
     * the HashMap fail-fast.  (See ConcurrentModificationException).
     * 記錄HashMap被修改結構的次數。
     * 修改包括改變鍵值對的個數或者修改內部結構,比如rehash
     * 這個域被用作HashMap的迭代器的fail-fast機制中
     * (參考ConcurrentModificationException)
     */
    transient int modCount;

    /**
     * The next size value at which to resize (capacity * load factor).
     * 擴容的臨界值,通過capacity * load factor可以計算出來。超過這個值HashMap將進行擴容
     * @serial
     */
    // (The javadoc description is true upon serialization.
    // Additionally, if the table array has not been allocated, this
    // field holds the initial array capacity, or zero signifying
    // DEFAULT_INITIAL_CAPACITY.)
    int threshold;

    /**
     * The load factor for the hash table.
     *負載因子
     * @serial
     */
    final float loadFactor;

public HashMap(int initialCapacity, float loadFactor)

	/**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and load factor.
     *
     * @param  initialCapacity the initial capacity
     * @param  loadFactor      the load factor
     * @throws IllegalArgumentException if the initial capacity is negative
     *         or the load factor is nonpositive
     */
/**
 * 使用指定的初始化容量initial capacity 和負載因子load factor構造一個空HashMap
 *
 * @param  initialCapacity 初始化容量
 * @param  loadFactor      負載因子
 * @throws IllegalArgumentException 如果指定的初始化容量爲負數或者加載因子爲非正數。
 */     
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        this.loadFactor = loadFactor;
        this.threshold = tableSizeFor(initialCapacity);
    }

如果初始化容量小於零,非法參數異常,大於最大容量,更新最大容量,判斷負載因子異常。

public HashMap(int initialCapacity)

    /**
     * Constructs an empty <tt>HashMap</tt> with the specified initial
     * capacity and the default load factor (0.75).
     *
     * @param  initialCapacity the initial capacity.
     * @throws IllegalArgumentException if the initial capacity is negative.
     */
 /**
 * 使用指定的初始化容量initial capacity和默認負載因子DEFAULT_LOAD_FACTOR(0.75)構造一個空HashMap
 *
 * @param  initialCapacity 初始化容量
 * @throws IllegalArgumentException 如果指定的初始化容量爲負數
 */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

public HashMap()

    /**
     * Constructs an empty <tt>HashMap</tt> with the default initial capacity
     * (16) and the default load factor (0.75).
     */
     /**
	 * 使用指定的初始化容量(16)和默認負載因子DEFAULT_LOAD_FACTOR(0.75)構造一個空HashMap
	 */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

public HashMap(Map<? extends K, ? extends V> m)

    /**
     * Constructs a new <tt>HashMap</tt> with the same mappings as the
     * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
     * default load factor (0.75) and an initial capacity sufficient to
     * hold the mappings in the specified <tt>Map</tt>.
     *
     * @param   m the map whose mappings are to be placed in this map
     * @throws  NullPointerException if the specified map is null
     * *使用與

*指定的<tt>map.<tt>創建“hashmap”時

*默認荷載係數(0.75)和初始承載力足以

*將映射保存在指定的<tt>映射中。

*

*@param m要將其映射放置在此映射中的映射

*@如果指定的映射爲空,則引發NullPointerException
     */
    public HashMap(Map<? extends K, ? extends V> m) {
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        putMapEntries(m, false);
    

整個夜,瘋狂揮霍。

final void final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) (Map<? extends K, ? extends V> m, boolean evict)

//將一個map即m放入當前實例的table中
    final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
        int s = m.size();
        if (s > 0) {
        //如果table沒初始化,ft = 一個值
        //t = ft 與 最大mum容量比較 賦值
        //t > 閾值條件,賦值改變threshold
            if (tablet == null) { // pre-size
                float ft = ((float)s / loadFactor) + 1.0F;
                int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                         (int)ft : MAXIMUM_CAPACITY);
                if (t > threshold)
                    threshold = tableSizeFor(t);
            }
            else if (s > threshold)
                resize();
            for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
                K key = e.getKey();
                V value = e.getValue();
                putVal(hash(key), key, value, false, evict);
            }
        }
    }

啊mdzz… 搞來搞去就是一頓操作改了threshold的值爲tableSizeFor((map大小 / loadFactor) + 1.0F)

public int size()

    /**
     * Returns the number of key-value mappings in this map.
     *
     * @return the number of key-value mappings in this map
     */
     /**
     *返回此映射中的鍵值映射數
     *@返回此映射中的鍵值映射數
     */
    public int size() {
        return size;
    }

public boolean isEmpty()

    /**
     * Returns <tt>true</tt> if this map contains no key-value mappings.
     *
     * @return <tt>true</tt> if this map contains no key-value mappings
     */
     /**
     *如果此映射不包含鍵值映射,則返回<tt>true。
     *@如果此映射不包含鍵值映射,則返回<tt>true
     */
    public boolean isEmpty() {
        return size == 0;
    }

    /**
     * Returns the value to which the specified key is mapped,
     * or {@code null} if this map contains no mapping for the key.
     *
     * <p>More formally, if this map contains a mapping from a key
     * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
     * key.equals(k))}, then this method returns {@code v}; otherwise
     * it returns {@code null}.  (There can be at most one such mapping.)
     *
     * <p>A return value of {@code null} does not <i>necessarily</i>
     * indicate that the map contains no mapping for the key; it's also
     * possible that the map explicitly maps the key to {@code null}.
     * The {@link #containsKey containsKey} operation may be used to
     * distinguish these two cases.
     *
     * @see #put(Object, Object)
     */
     /**
     *返回指定鍵映射到的值,
     *或者@code NULL如果此映射不包含鍵的映射。
     *<p>更正式地說,如果此映射包含來自鍵的映射
     *@code k到值@code v這樣@code(key==null?K==空:
     *key.equals(k)),則此方法返回@code v,否則返回
     *返回@code空。(最多可以有一個這樣的映射。)
     *<p>返回值@code null不一定<i>
     *指示映射不包含鍵的映射;它還
     *可能映射顯式地將鍵映射到@code null。
     *@link containskey containskey操作可用於
     *區分這兩種情況。
     * @see #put(Object, Object)
*/
    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

final Node<K,V> getNode(int hash, Object key)

    /**
     * Implements Map.get and related methods.
     *
     * @param hash hash for key
     * @param key the key
     * @return the node, or null if none
     */
     /**
     * 根據key的哈希值和key獲取對應的節點
	 * 
	 * @param hash 指定參數key的哈希值
	 * @param key 指定參數key
	 * @return 返回node,如果沒有則返回null
     */
   final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //表不爲空、長度不爲零且key對應value不空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //如果桶中的第一個節點得哈希值就和指定參數hash對應
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
                //返回第一個節點
                //如果沒匹配上
            if ((e = first.next) != null) {
            //第一節點屬於樹的實例
                if (first instanceof TreeNode)
                //當前桶用紅黑樹,調用紅黑樹get方法獲取節點
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        //若爲空,返回null
        return null;
    }

根據key的哈希值獲取key對應節點。


public boolean containsKey(Object key)

    // 調用getNode方法來獲取鍵值對,如果沒有找到返回false,找到了就返回ture
    public boolean containsKey(Object key) {
        return getNode(hash(key), key) != null;
    }

  1. public V put(K key, V value)
  2. final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict)
  3. final Node<K,V>[] resize()
    put方法首先檢查HashMap是否爲空,爲空執行resize初始化map,若非空,計算tab數組下標[(n - 1) & hash],判斷數組對象是否爲空,爲空時新建一個node節點。
public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }
    
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
 //檢查hashmap是否爲空,爲空的話執行resize,相當於初始化一個map  
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
  //非空時,計算tab數組下標[(n - 1) & hash],判斷數組對象是否爲空,爲空時新建一個node節點。      
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
  //數組對象非空,tab[i]非空,
  //判斷該節點的key與即將put的key值是否相同,相同的話先講tab[i]對應的node存儲起來。      
        else {
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
     //判斷tab[i]是否爲紅黑樹對象,若tab節點爲紅黑樹,則執行一次樹對象put操作。
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        //處理tab[i]節點爲鏈表對象,通過一個計數器binCount統計鏈表長度。如果tab[i]對象p的next爲null,則鏈表到頭了,這個時候新建一個node<key,value>節點爲p.next。
           //如果鏈表長度計數器binCount>7即TREEIFY_THRESHOLD - 1即8-1,即鏈表長度大於8時,則進行紅黑樹轉換。如果不滿足轉換條件,鏈表種插入新節點完畢,無需其他操作
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
            //針對存在相同key的節點,執行value覆蓋,並返回舊值。
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        //若tab大小超過閾值(容量*負載因子),執行resize擴容操作,返回null。
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        if (oldCap > 0) {
        // 老容量超過最大容量,不進行擴容
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 擴容兩倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
        // 新建擴容數組
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
        // 遍歷老數組
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    // 老數組子節點爲null,通過e.hash & (newCap - 1)獲取數組下標,將節點填充到該數組對象中
                    
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    else if (e instanceof TreeNode)
                         // 節點爲紅黑色時
                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            // 元素位置沒有發生變化
                            // 原hash與原容量進行與運算,loHead、loTail位置不變時的頭尾節點
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            // 元素位置發生變化
                            // hiHead、hiTail位置變化後新的頭節點和尾節點
 
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                         // 位置不變時,(e.hash & oldCap) == 0,數組當前下標指向loHead
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                         // 位置變化時,數組下標變爲[j + oldCap],指向頭節點
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
    

final void treeifyBin(Node<K,V>[] tab, int hash)樹化

    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
     
    /**
     * Replaces all linked nodes in bin at index for given hash unless
     * table is too small, in which case resizes instead.
     */
/**
*替換給定哈希的索引處bin中的所有鏈接節點,除非
*表太小,在這種情況下會調整大小。
*/
    final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        //如果元素數組長度爲空或者小於MIN_TREEIFY_CAPACITY,執行resize操作
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
            //數組長度與hash值位運算,得到鏈表的首節點,hd是樹首節點,tl是樹尾結點
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
            //節點變成樹節點
                TreeNode<K,V> p = replacementTreeNode(e, null);
                //如果尾結點爲空,賦值給首節點,樹的根結點
               //如果尾結點不爲空,則是雙向鏈表結構構成
                if (tl == null)
                    hd = p;
                else {
                //prev指向前一個節點尾結點
                    p.prev = tl;
                 //next指向當前節點   
                    tl.next = p;
                }
                //把當前節點設置爲尾結點
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
                //轉換成紅黑樹
        }
    }

public void putAll(Map<? extends K, ? extends V> m)

/**
     * Copies all of the mappings from the specified map to this map.
     * These mappings will replace any mappings that this map had for
     * any of the keys currently in the specified map.
     *
     * @param m mappings to be stored in this map
     * @throws NullPointerException if the specified map is null
     */
    public void putAll(Map<? extends K, ? extends V> m) {
    //調用putMapEntries
        putMapEntries(m, true);
    }


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章