JAVA-------hashmap

第1部分 HashMap介紹

HashMap簡介
HashMap 是一個散列表,它存儲的內容是鍵值對(key-value)映射。
HashMap 繼承於AbstractMap,實現了Map、Cloneable、java.io.Serializable接口。
HashMap 的實現不是同步的,這意味着它不是線程安全的。它的key、value都可以爲null。此外,HashMap中的映射不是有序的。

HashMap 的實例有兩個參數影響其性能:“初始容量” 和 “加載因子”。容量 是哈希表中桶的數量,初始容量 只是哈希表在創建時的容量。加載因子 是哈希表在其容量自動增加之前可以達到多滿的一種尺度。當哈希表中的條目數超出了加載因子與當前容量的乘積時,則要對該哈希表進行 rehash 操作(即重建內部數據結構),從而哈希表將具有大約兩倍的桶數。
通常,默認加載因子是 0.75, 這是在時間和空間成本上尋求一種折衷。加載因子過高雖然減少了空間開銷,但同時也增加了查詢成本(在大多數 HashMap 類的操作中,包括 get 和 put 操作,都反映了這一點)。在設置初始容量時應該考慮到映射中所需的條目數及其加載因子,以便最大限度地減少 rehash 操作次數。如果初始容量大於最大條目數除以加載因子,則不會發生 rehash 操作。

HashMap的構造函數
HashMap共有4個構造函數,如下

// 默認構造函數。
HashMap()

// 指定“容量大小”的構造函數
HashMap(int capacity)

// 指定“容量大小”和“加載因子”的構造函數
HashMap(int capacity, float loadFactor)

// 包含“子Map”的構造函數
HashMap(Map<? extends K, ? extends V> map)

HashMap的API

void                 clear()
Object               clone()
boolean              containsKey(Object key)
boolean              containsValue(Object value)
Set<Entry<K, V>>     entrySet()
V                    get(Object key)
boolean              isEmpty()
Set<K>               keySet()
V                    put(K key, V value)
void                 putAll(Map<? extends K, ? extends V> map)
V                    remove(Object key)
int                  size()
Collection<V>        values()

第2部分 HashMap數據結構

HashMap的繼承關係

java.lang.Object
   ↳     java.util.AbstractMap<K, V>
         ↳     java.util.HashMap<K, V>

public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable { }

在這裏插入圖片描述
從圖中可以看出:
(01) HashMap繼承於AbstractMap類,實現了Map接口。Map是"key-value鍵值對"接口,AbstractMap實現了"鍵值對"的通用函數接口。
(02) HashMap是通過"拉鍊法"實現的哈希表。它包括幾個重要的成員變量:table, size, threshold, loadFactor, modCount。
  table是一個Entry[]數組類型,而Entry實際上就是一個單向鏈表。哈希表的"key-value鍵值對"都是存儲在Entry數組中的。
  size是HashMap的大小,它是HashMap保存的鍵值對的數量。
  threshold是HashMap的閾值,用於判斷是否需要調整HashMap的容量。threshold的值=“容量*加載因子”,當HashMap中存儲數據的數量達到threshold時,就需要將HashMap的容量加倍。
  loadFactor就是加載因子。
  modCount是用來實現fail-fast機制的。

第3部分 HashMap源碼解析(基於JDK1.6.0_45)

爲了更瞭解HashMap的原理,下面對HashMap源碼代碼作出分析。
在閱讀源碼時,建議參考後面的說明來建立對HashMap的整體認識,這樣更容易理解HashMap。

package java.util;
import java.io.*;

public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable
{

    // 默認的初始容量是16,必須是2的冪。
    static final int DEFAULT_INITIAL_CAPACITY = 16;

    // 最大容量(必須是2的冪且小於2的30次方,傳入容量過大將被這個值替換)
    static final int MAXIMUM_CAPACITY = 1 << 30;

    // 默認加載因子
    static final float DEFAULT_LOAD_FACTOR = 0.75f;

    // 存儲數據的Entry數組,長度是2的冪。
    // HashMap是採用拉鍊法實現的,每一個Entry本質上是一個單向鏈表
    transient Entry[] table;

    // HashMap的大小,它是HashMap保存的鍵值對的數量
    transient int size;

    // HashMap的閾值,用於判斷是否需要調整HashMap的容量(threshold = 容量*加載因子)
    int threshold;

    // 加載因子實際大小
    final float loadFactor;

    // HashMap被改變的次數
    transient volatile int modCount;

    // 指定“容量大小”和“加載因子”的構造函數
    public HashMap(int initialCapacity, float loadFactor) {
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        // HashMap的最大容量只能是MAXIMUM_CAPACITY
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);

        // 找出“大於initialCapacity”的最小的2的冪
        int capacity = 1;
        while (capacity < initialCapacity)
            capacity <<= 1;

        // 設置“加載因子”
        this.loadFactor = loadFactor;
        // 設置“HashMap閾值”,當HashMap中存儲數據的數量達到threshold時,就需要將HashMap的容量加倍。
        threshold = (int)(capacity * loadFactor);
        // 創建Entry數組,用來保存數據
        table = new Entry[capacity];
        init();
    }


    // 指定“容量大小”的構造函數
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }

    // 默認構造函數。
    public HashMap() {
        // 設置“加載因子”
        this.loadFactor = DEFAULT_LOAD_FACTOR;
        // 設置“HashMap閾值”,當HashMap中存儲數據的數量達到threshold時,就需要將HashMap的容量加倍。
        threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
        // 創建Entry數組,用來保存數據
        table = new Entry[DEFAULT_INITIAL_CAPACITY];
        init();
    }

    // 包含“子Map”的構造函數
    public HashMap(Map<? extends K, ? extends V> m) {
        this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                      DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
        // 將m中的全部元素逐個添加到HashMap中
        putAllForCreate(m);
    }

    static int hash(int h) {
        h ^= (h >>> 20) ^ (h >>> 12);
        return h ^ (h >>> 7) ^ (h >>> 4);
    }

    // 返回索引值
    // h & (length-1)保證返回值的小於length
    static int indexFor(int h, int length) {
        return h & (length-1);
    }

    public int size() {
        return size;
    }

    public boolean isEmpty() {
        return size == 0;
    }

    // 獲取key對應的value
    public V get(Object key) {
        if (key == null)
            return getForNullKey();
        // 獲取key的hash值
        int hash = hash(key.hashCode());
        // 在“該hash值對應的鏈表”上查找“鍵值等於key”的元素
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
                return e.value;
        }
        return null;
    }

    // 獲取“key爲null”的元素的值
    // HashMap將“key爲null”的元素存儲在table[0]位置!
    private V getForNullKey() {
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null)
                return e.value;
        }
        return null;
    }

    // HashMap是否包含key
    public boolean containsKey(Object key) {
        return getEntry(key) != null;
    }

    // 返回“鍵爲key”的鍵值對
    final Entry<K,V> getEntry(Object key) {
        // 獲取哈希值
        // HashMap將“key爲null”的元素存儲在table[0]位置,“key不爲null”的則調用hash()計算哈希值
        int hash = (key == null) ? 0 : hash(key.hashCode());
        // 在“該hash值對應的鏈表”上查找“鍵值等於key”的元素
        for (Entry<K,V> e = table[indexFor(hash, table.length)];
             e != null;
             e = e.next) {
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k))))
                return e;
        }
        return null;
    }

    // 將“key-value”添加到HashMap中
    public V put(K key, V value) {
        // 若“key爲null”,則將該鍵值對添加到table[0]中。
        if (key == null)
            return putForNullKey(value);
        // 若“key不爲null”,則計算該key的哈希值,然後將其添加到該哈希值對應的鏈表中。
        int hash = hash(key.hashCode());
        int i = indexFor(hash, table.length);
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            // 若“該key”對應的鍵值對已經存在,則用新的value取代舊的value。然後退出!
            if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }

        // 若“該key”對應的鍵值對不存在,則將“key-value”添加到table中
        modCount++;
        addEntry(hash, key, value, i);
        return null;
    }

    // putForNullKey()的作用是將“key爲null”鍵值對添加到table[0]位置
    private V putForNullKey(V value) {
        for (Entry<K,V> e = table[0]; e != null; e = e.next) {
            if (e.key == null) {
                V oldValue = e.value;
                e.value = value;
                e.recordAccess(this);
                return oldValue;
            }
        }
        // 這裏的完全不會被執行到!
        modCount++;
        addEntry(0, null, value, 0);
        return null;
    }

    // 創建HashMap對應的“添加方法”,
    // 它和put()不同。putForCreate()是內部方法,它被構造函數等調用,用來創建HashMap
    // 而put()是對外提供的往HashMap中添加元素的方法。
    private void putForCreate(K key, V value) {
        int hash = (key == null) ? 0 : hash(key.hashCode());
        int i = indexFor(hash, table.length);

        // 若該HashMap表中存在“鍵值等於key”的元素,則替換該元素的value值
        for (Entry<K,V> e = table[i]; e != null; e = e.next) {
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k)))) {
                e.value = value;
                return;
            }
        }

        // 若該HashMap表中不存在“鍵值等於key”的元素,則將該key-value添加到HashMap中
        createEntry(hash, key, value, i);
    }

    // 將“m”中的全部元素都添加到HashMap中。
    // 該方法被內部的構造HashMap的方法所調用。
    private void putAllForCreate(Map<? extends K, ? extends V> m) {
        // 利用迭代器將元素逐個添加到HashMap中
        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
            Map.Entry<? extends K, ? extends V> e = i.next();
            putForCreate(e.getKey(), e.getValue());
        }
    }

    // 重新調整HashMap的大小,newCapacity是調整後的單位
    void resize(int newCapacity) {
        Entry[] oldTable = table;
        int oldCapacity = oldTable.length;
        if (oldCapacity == MAXIMUM_CAPACITY) {
            threshold = Integer.MAX_VALUE;
            return;
        }

        // 新建一個HashMap,將“舊HashMap”的全部元素添加到“新HashMap”中,
        // 然後,將“新HashMap”賦值給“舊HashMap”。
        Entry[] newTable = new Entry[newCapacity];
        transfer(newTable);
        table = newTable;
        threshold = (int)(newCapacity * loadFactor);
    }

    // 將HashMap中的全部元素都添加到newTable中
    void transfer(Entry[] newTable) {
        Entry[] src = table;
        int newCapacity = newTable.length;
        for (int j = 0; j < src.length; j++) {
            Entry<K,V> e = src[j];
            if (e != null) {
                src[j] = null;
                do {
                    Entry<K,V> next = e.next;
                    int i = indexFor(e.hash, newCapacity);
                    e.next = newTable[i];
                    newTable[i] = e;
                    e = next;
                } while (e != null);
            }
        }
    }

    // 將"m"的全部元素都添加到HashMap中
    public void putAll(Map<? extends K, ? extends V> m) {
        // 有效性判斷
        int numKeysToBeAdded = m.size();
        if (numKeysToBeAdded == 0)
            return;

        // 計算容量是否足夠,
        // 若“當前實際容量 < 需要的容量”,則將容量x2。
        if (numKeysToBeAdded > threshold) {
            int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
            if (targetCapacity > MAXIMUM_CAPACITY)
                targetCapacity = MAXIMUM_CAPACITY;
            int newCapacity = table.length;
            while (newCapacity < targetCapacity)
                newCapacity <<= 1;
            if (newCapacity > table.length)
                resize(newCapacity);
        }

        // 通過迭代器,將“m”中的元素逐個添加到HashMap中。
        for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
            Map.Entry<? extends K, ? extends V> e = i.next();
            put(e.getKey(), e.getValue());
        }
    }

    // 刪除“鍵爲key”元素
    public V remove(Object key) {
        Entry<K,V> e = removeEntryForKey(key);
        return (e == null ? null : e.value);
    }

    // 刪除“鍵爲key”的元素
    final Entry<K,V> removeEntryForKey(Object key) {
        // 獲取哈希值。若key爲null,則哈希值爲0;否則調用hash()進行計算
        int hash = (key == null) ? 0 : hash(key.hashCode());
        int i = indexFor(hash, table.length);
        Entry<K,V> prev = table[i];
        Entry<K,V> e = prev;

        // 刪除鏈表中“鍵爲key”的元素
        // 本質是“刪除單向鏈表中的節點”
        while (e != null) {
            Entry<K,V> next = e.next;
            Object k;
            if (e.hash == hash &&
                ((k = e.key) == key || (key != null && key.equals(k)))) {
                modCount++;
                size--;
                if (prev == e)
                    table[i] = next;
                else
                    prev.next = next;
                e.recordRemoval(this);
                return e;
            }
            prev = e;
            e = next;
        }

        return e;
    }

    // 刪除“鍵值對”
    final Entry<K,V> removeMapping(Object o) {
        if (!(o instanceof Map.Entry))
            return null;

        Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
        Object key = entry.getKey();
        int hash = (key == null) ? 0 : hash(key.hashCode());
        int i = indexFor(hash, table.length);
        Entry<K,V> prev = table[i];
        Entry<K,V> e = prev;

        // 刪除鏈表中的“鍵值對e”
        // 本質是“刪除單向鏈表中的節點”
        while (e != null) {
            Entry<K,V> next = e.next;
            if (e.hash == hash && e.equals(entry)) {
                modCount++;
                size--;
                if (prev == e)
                    table[i] = next;
                else
                    prev.next = next;
                e.recordRemoval(this);
                return e;
            }
            prev = e;
            e = next;
        }

        return e;
    }

    // 清空HashMap,將所有的元素設爲null
    public void clear() {
        modCount++;
        Entry[] tab = table;
        for (int i = 0; i < tab.length; i++)
            tab[i] = null;
        size = 0;
    }

    // 是否包含“值爲value”的元素
    public boolean containsValue(Object value) {
    // 若“value爲null”,則調用containsNullValue()查找
    if (value == null)
            return containsNullValue();

    // 若“value不爲null”,則查找HashMap中是否有值爲value的節點。
    Entry[] tab = table;
        for (int i = 0; i < tab.length ; i++)
            for (Entry e = tab[i] ; e != null ; e = e.next)
                if (value.equals(e.value))
                    return true;
    return false;
    }

    // 是否包含null值
    private boolean containsNullValue() {
    Entry[] tab = table;
        for (int i = 0; i < tab.length ; i++)
            for (Entry e = tab[i] ; e != null ; e = e.next)
                if (e.value == null)
                    return true;
    return false;
    }

    // 克隆一個HashMap,並返回Object對象
    public Object clone() {
        HashMap<K,V> result = null;
        try {
            result = (HashMap<K,V>)super.clone();
        } catch (CloneNotSupportedException e) {
            // assert false;
        }
        result.table = new Entry[table.length];
        result.entrySet = null;
        result.modCount = 0;
        result.size = 0;
        result.init();
        // 調用putAllForCreate()將全部元素添加到HashMap中
        result.putAllForCreate(this);

        return result;
    }

    // Entry是單向鏈表。
    // 它是 “HashMap鏈式存儲法”對應的鏈表。
    // 它實現了Map.Entry 接口,即實現getKey(), getValue(), setValue(V value), equals(Object o), hashCode()這些函數
    static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        // 指向下一個節點
        Entry<K,V> next;
        final int hash;

        // 構造函數。
        // 輸入參數包括"哈希值(h)", "鍵(k)", "值(v)", "下一節點(n)"
        Entry(int h, K k, V v, Entry<K,V> n) {
            value = v;
            next = n;
            key = k;
            hash = h;
        }

        public final K getKey() {
            return key;
        }

        public final V getValue() {
            return value;
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }

        // 判斷兩個Entry是否相等
        // 若兩個Entry的“key”和“value”都相等,則返回true。
        // 否則,返回false
        public final boolean equals(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry e = (Map.Entry)o;
            Object k1 = getKey();
            Object k2 = e.getKey();
            if (k1 == k2 || (k1 != null && k1.equals(k2))) {
                Object v1 = getValue();
                Object v2 = e.getValue();
                if (v1 == v2 || (v1 != null && v1.equals(v2)))
                    return true;
            }
            return false;
        }

        // 實現hashCode()
        public final int hashCode() {
            return (key==null   ? 0 : key.hashCode()) ^
                   (value==null ? 0 : value.hashCode());
        }

        public final String toString() {
            return getKey() + "=" + getValue();
        }

        // 當向HashMap中添加元素時,繪調用recordAccess()。
        // 這裏不做任何處理
        void recordAccess(HashMap<K,V> m) {
        }

        // 當從HashMap中刪除元素時,繪調用recordRemoval()。
        // 這裏不做任何處理
        void recordRemoval(HashMap<K,V> m) {
        }
    }

    // 新增Entry。將“key-value”插入指定位置,bucketIndex是位置索引。
    void addEntry(int hash, K key, V value, int bucketIndex) {
        // 保存“bucketIndex”位置的值到“e”中
        Entry<K,V> e = table[bucketIndex];
        // 設置“bucketIndex”位置的元素爲“新Entry”,
        // 設置“e”爲“新Entry的下一個節點”
        table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
        // 若HashMap的實際大小 不小於 “閾值”,則調整HashMap的大小
        if (size++ >= threshold)
            resize(2 * table.length);
    }

    // 創建Entry。將“key-value”插入指定位置,bucketIndex是位置索引。
    // 它和addEntry的區別是:
    // (01) addEntry()一般用在 新增Entry可能導致“HashMap的實際容量”超過“閾值”的情況下。
    //   例如,我們新建一個HashMap,然後不斷通過put()向HashMap中添加元素;
    // put()是通過addEntry()新增Entry的。
    //   在這種情況下,我們不知道何時“HashMap的實際容量”會超過“閾值”;
    //   因此,需要調用addEntry()
    // (02) createEntry() 一般用在 新增Entry不會導致“HashMap的實際容量”超過“閾值”的情況下。
    //   例如,我們調用HashMap“帶有Map”的構造函數,它繪將Map的全部元素添加到HashMap中;
    // 但在添加之前,我們已經計算好“HashMap的容量和閾值”。也就是,可以確定“即使將Map中
    // 的全部元素添加到HashMap中,都不會超過HashMap的閾值”。
    //   此時,調用createEntry()即可。
    void createEntry(int hash, K key, V value, int bucketIndex) {
        // 保存“bucketIndex”位置的值到“e”中
        Entry<K,V> e = table[bucketIndex];
        // 設置“bucketIndex”位置的元素爲“新Entry”,
        // 設置“e”爲“新Entry的下一個節點”
        table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
        size++;
    }

    // HashIterator是HashMap迭代器的抽象出來的父類,實現了公共了函數。
    // 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3個子類。
    private abstract class HashIterator<E> implements Iterator<E> {
        // 下一個元素
        Entry<K,V> next;
        // expectedModCount用於實現fast-fail機制。
        int expectedModCount;
        // 當前索引
        int index;
        // 當前元素
        Entry<K,V> current;

        HashIterator() {
            expectedModCount = modCount;
            if (size > 0) { // advance to first entry
                Entry[] t = table;
                // 將next指向table中第一個不爲null的元素。
                // 這裏利用了index的初始值爲0,從0開始依次向後遍歷,直到找到不爲null的元素就退出循環。
                while (index < t.length && (next = t[index++]) == null)
                    ;
            }
        }

        public final boolean hasNext() {
            return next != null;
        }

        // 獲取下一個元素
        final Entry<K,V> nextEntry() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            Entry<K,V> e = next;
            if (e == null)
                throw new NoSuchElementException();

            // 注意!!!
            // 一個Entry就是一個單向鏈表
            // 若該Entry的下一個節點不爲空,就將next指向下一個節點;
            // 否則,將next指向下一個鏈表(也是下一個Entry)的不爲null的節點。
            if ((next = e.next) == null) {
                Entry[] t = table;
                while (index < t.length && (next = t[index++]) == null)
                    ;
            }
            current = e;
            return e;
        }

        // 刪除當前元素
        public void remove() {
            if (current == null)
                throw new IllegalStateException();
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
            Object k = current.key;
            current = null;
            HashMap.this.removeEntryForKey(k);
            expectedModCount = modCount;
        }

    }

    // value的迭代器
    private final class ValueIterator extends HashIterator<V> {
        public V next() {
            return nextEntry().value;
        }
    }

    // key的迭代器
    private final class KeyIterator extends HashIterator<K> {
        public K next() {
            return nextEntry().getKey();
        }
    }

    // Entry的迭代器
    private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
        public Map.Entry<K,V> next() {
            return nextEntry();
        }
    }

    // 返回一個“key迭代器”
    Iterator<K> newKeyIterator()   {
        return new KeyIterator();
    }
    // 返回一個“value迭代器”
    Iterator<V> newValueIterator()   {
        return new ValueIterator();
    }
    // 返回一個“entry迭代器”
    Iterator<Map.Entry<K,V>> newEntryIterator()   {
        return new EntryIterator();
    }

    // HashMap的Entry對應的集合
    private transient Set<Map.Entry<K,V>> entrySet = null;

    // 返回“key的集合”,實際上返回一個“KeySet對象”
    public Set<K> keySet() {
        Set<K> ks = keySet;
        return (ks != null ? ks : (keySet = new KeySet()));
    }

    // Key對應的集合
    // KeySet繼承於AbstractSet,說明該集合中沒有重複的Key。
    private final class KeySet extends AbstractSet<K> {
        public Iterator<K> iterator() {
            return newKeyIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsKey(o);
        }
        public boolean remove(Object o) {
            return HashMap.this.removeEntryForKey(o) != null;
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    // 返回“value集合”,實際上返回的是一個Values對象
    public Collection<V> values() {
        Collection<V> vs = values;
        return (vs != null ? vs : (values = new Values()));
    }

    // “value集合”
    // Values繼承於AbstractCollection,不同於“KeySet繼承於AbstractSet”,
    // Values中的元素能夠重複。因爲不同的key可以指向相同的value。
    private final class Values extends AbstractCollection<V> {
        public Iterator<V> iterator() {
            return newValueIterator();
        }
        public int size() {
            return size;
        }
        public boolean contains(Object o) {
            return containsValue(o);
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    // 返回“HashMap的Entry集合”
    public Set<Map.Entry<K,V>> entrySet() {
        return entrySet0();
    }

    // 返回“HashMap的Entry集合”,它實際是返回一個EntrySet對象
    private Set<Map.Entry<K,V>> entrySet0() {
        Set<Map.Entry<K,V>> es = entrySet;
        return es != null ? es : (entrySet = new EntrySet());
    }

    // EntrySet對應的集合
    // EntrySet繼承於AbstractSet,說明該集合中沒有重複的EntrySet。
    private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
        public Iterator<Map.Entry<K,V>> iterator() {
            return newEntryIterator();
        }
        public boolean contains(Object o) {
            if (!(o instanceof Map.Entry))
                return false;
            Map.Entry<K,V> e = (Map.Entry<K,V>) o;
            Entry<K,V> candidate = getEntry(e.getKey());
            return candidate != null && candidate.equals(e);
        }
        public boolean remove(Object o) {
            return removeMapping(o) != null;
        }
        public int size() {
            return size;
        }
        public void clear() {
            HashMap.this.clear();
        }
    }

    // java.io.Serializable的寫入函數
    // 將HashMap的“總的容量,實際容量,所有的Entry”都寫入到輸出流中
    private void writeObject(java.io.ObjectOutputStream s)
        throws IOException
    {
        Iterator<Map.Entry<K,V>> i =
            (size > 0) ? entrySet0().iterator() : null;

        // Write out the threshold, loadfactor, and any hidden stuff
        s.defaultWriteObject();

        // Write out number of buckets
        s.writeInt(table.length);

        // Write out size (number of Mappings)
        s.writeInt(size);

        // Write out keys and values (alternating)
        if (i != null) {
            while (i.hasNext()) {
            Map.Entry<K,V> e = i.next();
            s.writeObject(e.getKey());
            s.writeObject(e.getValue());
            }
        }
    }


    private static final long serialVersionUID = 362498820763181265L;

    // java.io.Serializable的讀取函數:根據寫入方式讀出
    // 將HashMap的“總的容量,實際容量,所有的Entry”依次讀出
    private void readObject(java.io.ObjectInputStream s)
         throws IOException, ClassNotFoundException
    {
        // Read in the threshold, loadfactor, and any hidden stuff
        s.defaultReadObject();

        // Read in number of buckets and allocate the bucket array;
        int numBuckets = s.readInt();
        table = new Entry[numBuckets];

        init();  // Give subclass a chance to do its thing.

        // Read in size (number of Mappings)
        int size = s.readInt();

        // Read the keys and values, and put the mappings in the HashMap
        for (int i=0; i<size; i++) {
            K key = (K) s.readObject();
            V value = (V) s.readObject();
            putForCreate(key, value);
        }
    }

    // 返回“HashMap總的容量”
    int   capacity()     { return table.length; }
    // 返回“HashMap的加載因子”
    float loadFactor()   { return loadFactor;   }
}

說明:

在詳細介紹HashMap的代碼之前,我們需要了解:HashMap就是一個散列表,它是通過“拉鍊法”解決哈希衝突的。
還需要再補充說明的一點是影響HashMap性能的有兩個參數:初始容量(initialCapacity) 和加載因子(loadFactor)。容量 是哈希表中桶的數量,初始容量只是哈希表在創建時的容量。加載因子 是哈希表在其容量自動增加之前可以達到多滿的一種尺度。當哈希表中的條目數超出了加載因子與當前容量的乘積時,則要對該哈希表進行 rehash 操作(即重建內部數據結構),從而哈希表將具有大約兩倍的桶數。

第4部分 HashMap示例

import java.util.Map;
import java.util.Random;
import java.util.Iterator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map.Entry;
import java.util.Collection;

/*
 * @desc HashMap測試程序
 *
 * @author skywang
 */
public class HashMapTest {

    public static void main(String[] args) {
        testHashMapAPIs();
    }

    private static void testHashMapAPIs() {
        // 初始化隨機種子
        Random r = new Random();
        // 新建HashMap
        HashMap map = new HashMap();
        // 添加操作
        map.put("one", r.nextInt(10));
        map.put("two", r.nextInt(10));
        map.put("three", r.nextInt(10));

        // 打印出map
        System.out.println("map:"+map );

        // 通過Iterator遍歷key-value
        Iterator iter = map.entrySet().iterator();
        while(iter.hasNext()) {
            Map.Entry entry = (Map.Entry)iter.next();
            System.out.println("next : "+ entry.getKey() +" - "+entry.getValue());
        }

        // HashMap的鍵值對個數
        System.out.println("size:"+map.size());

        // containsKey(Object key) :是否包含鍵key
        System.out.println("contains key two : "+map.containsKey("two"));
        System.out.println("contains key five : "+map.containsKey("five"));

        // containsValue(Object value) :是否包含值value
        System.out.println("contains value 0 : "+map.containsValue(new Integer(0)));

        // remove(Object key) : 刪除鍵key對應的鍵值對
        map.remove("three");

        System.out.println("map:"+map );

        // clear() : 清空HashMap
        map.clear();

        // isEmpty() : HashMap是否爲空
        System.out.println((map.isEmpty()?"map is empty":"map is not empty") );
    }
}

(某一次)運行結果:

map:{two=7, one=9, three=6}
next : two - 7
next : one - 9
next : three - 6
size:3
contains key two : true
contains key five : false
contains value 0 : false
map:{two=7, one=9}
map is empty
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章