概率論與數理統計(學習筆記)

前言

只做自己筆記,日後查詢之用。

二維隨機變量

一維概率密度函數定義

F(x)=xf(t)dtF(x)=\int_{-\infty}^{x} f(t) \mathrm{d} t

分佈函數與概率密度函數

F(x,y)=P{(Xx)(Yy)}=P{Xx,Yy}F(x, y)=P\{(X \leqslant x) \cap(Y \leqslant y)\} = P\{X \leqslant x, Y \leqslant y\}

F(x,y)=yxf(u,v)dudvF(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) \mathrm{d} u \mathrm{d} v

邊緣分佈

FX(x)=P{Xx}=P{Xx,Y<}=F(x,)F_{X}(x)=P\{X \leqslant x\}=P\{X \leqslant x, Y<\infty\}=F(x, \infty)

FX(x)=F(x,)=x[f(x,y)dy]dxF_{X}(x)=F(x, \infty)=\int_{-\infty}^{x}\left[\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y\right] \mathrm{d} x
邊緣密度函數:
fX(x)=dFX(x)dx=[f(x,y)dy]x=x=f(x,y)dyf_{X}(x)=\frac{\mathrm{d}F_{X}(x)}{\mathrm{d}x}=\left[\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y\right] ^x_{x=-\infty}=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} y

即對 x=xx=x 這一點上, 所有 yy 作積分。同理:

fY(y)=f(x,y)dxf_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) \mathrm{d} x

條件分佈

  • 離散條件概率:
    P{X=xiY=yj}=P{X=xi,Y=yj}P{Y=yj}P\left\{X=x_{i} | Y=y_{j}\right\}=\frac{P\left\{X=x_{i}, Y=y_{j}\right\}}{P\left\{Y=y_{j}\right\}}
  • 連續條件概率密度:
    由於在一個點上, 概率密度爲0, 因此, 取一個 ε\varepsilon的範圍:
    P{Xxy<Yy+ε}=P{Xx,y<Yy+ε}P{y<Yy+ε}=x[yy+εf(x,y)dy]dxyy+εfY(y)dy\begin{aligned} P\{X \leqslant x | y<Y \leqslant y+\varepsilon\} &=\frac{P\{X \leqslant x, y<Y \leqslant y+\varepsilon\}}{P\{y<Y \leqslant y+\varepsilon\}} \\ &=\frac{\int_{-\infty}^{x}\left[\int_{y}^{y+\varepsilon} f(x, y) d y\right] d x}{\int_{y}^{y+\varepsilon} f_{Y}(y) d y} \end{aligned}

ε\varepsilon 很小時:
分子分母都趨於0, 由洛必達法則:
limxcf(x)g(x)=limxcf(x)g(x)\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
有:
x[yy+εf(x,y)dy]dxyy+εfY(y)dy=[yy+εf(x,y)dy]x=x[yy+εf(x,y)dy]x=yy+εfY(y)dy=εf(x,y)dy0yy+εfY(y)dy=εxf(x,y)dxεfY(y)=xf(x,y)fY(y)dx\begin{aligned} \frac{\int_{-\infty}^{x}\left[\int_{y}^{y+\varepsilon} f(x, y) d y\right] d x}{\int_{y}^{y+\varepsilon} f_{Y}(y) d y} &= \frac{\left[\int_{y}^{y+\varepsilon} f(x, y) d y\right]_{x=x}-\left[\int_{y}^{y+\varepsilon} f(x, y) d y\right]_{x=-\infty}}{\int_{y}^{y+\varepsilon} f_{Y}(y) d y}\\ &= \frac{\varepsilon f(x, y) d y-0}{\int_{y}^{y+\varepsilon} f_{Y}(y) d y}=\approx \frac{\varepsilon \int_{-\infty}^{x} f(x, y) \mathrm{d} x}{\varepsilon f_{Y}(y)}=\int_{-\infty}^{x} \frac{f(x, y)}{f_{Y}(y)} \mathrm{d} x \end{aligned}

即:
fXY(xy)=f(x,y)fY(y)f_{X | Y}(x | y)=\frac{f(x, y)}{f_{Y}(y)}
這個和貝葉斯公式是非常像的。

相互獨立

顯然,顧名思義, 相互獨立就是:
P{Xx,Yy}=P{Xx}P{Yy}P\{X \leqslant x, Y \leqslant y\}=P\{X \leqslant x\} P\{Y \leqslant y\}
用概率分佈函數表示:
F(x,y)=FX(x)FY(y)F(x, y)=F_{X}(x) F_{Y}(y)
對兩邊都對xxyy求導:
f(x,y)=fX(x)fY(y)f(x, y)=f_{X}(x) f_{Y}(y)

函數分佈

Z=X+YZ = X + Y 的概率密度爲:
fX+Y(z)=f(zy,y)dyfX+Y(z)=f(x,zx)dx\begin{array}{l} f_{X+Y}(z)=\int_{-\infty}^{\infty} f(z-y, y) \mathrm{d} y \\ f_{X+Y}(z)=\int_{-\infty}^{\infty} f(x, z-x) \mathrm{d} x \end{array}
xx, yy獨立:
fX+Y(z)=fXfY=fx(zy)fY(y)dyf_{X+Y}(z)=f_{X} * f_{Y} = \int_{-\infty}^{\infty} f_{x}(z-y) f_{Y}(y) \mathrm{d} y

推廣到正態分佈 有以下性質:

Z=X1+X2++XnZ=X_{1}+X_{2}+\cdots+X_{n}, 則 Z=X1+X2++XnZ=X_{1}+X_{2}+\cdots+X_{n}滿足:

ZN(μ1+μ2++μn,σ12+σ22++σn2)Z \sim N\left(\mu_{1}+\mu_{2}+\cdots+\mu_{n}, \sigma_{1}^{2}+\sigma_{2}^{2}+\cdots+\sigma_{n}^{2}\right)

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章