HashMap中的hash算法

hash算法 
我們可以看到在hashmap中要找到某個元素,需要根據key的hash值來求得對應數組中的位置。如何計算這個位置就是hash算法。前面說過hashmap的數據結構是數組和鏈表的結合,所以我們當然希望這個hashmap裏面的元素位置儘量的分佈均勻些,儘量使得每個位置上的元素數量只有一個,那麼當我們用hash算法求得這個位置的時候,馬上就可以知道對應位置的元素就是我們要的,而不用再去遍歷鏈表。 

所以我們首先想到的就是把hashcode對數組長度取模運算,這樣一來,元素的分佈相對來說是比較均勻的。但是,“模”運算的消耗還是比較大的,能不能找一種更快速,消耗更小的方式那?java中時這樣做的,

 

Java代碼  收藏代碼

  1. static int indexFor(int h, int length) {  
  2.        return h & (length-1);  
  3.    }  



首先算得key得hashcode值,然後跟數組的長度-1做一次“與”運算(&)。看上去很簡單,其實比較有玄機。比如數組的長度是2的4次方,那麼hashcode就會和2的4次方-1做“與”運算。很多人都有這個疑問,爲什麼hashmap的數組初始化大小都是2的次方大小時,hashmap的效率最高,我以2的4次方舉例,來解釋一下爲什麼數組大小爲2的冪時hashmap訪問的性能最高。 

         看下圖,左邊兩組是數組長度爲16(2的4次方),右邊兩組是數組長度爲15。兩組的hashcode均爲8和9,但是很明顯,當它們和1110“與”的時候,產生了相同的結果,也就是說它們會定位到數組中的同一個位置上去,這就產生了碰撞,8和9會被放到同一個鏈表上,那麼查詢的時候就需要遍歷這個鏈表,得到8或者9,這樣就降低了查詢的效率。同時,我們也可以發現,當數組長度爲15的時候,hashcode的值會與14(1110)進行“與”,那麼最後一位永遠是0,而0001,0011,0101,1001,1011,0111,1101這幾個位置永遠都不能存放元素了,空間浪費相當大,更糟的是這種情況中,數組可以使用的位置比數組長度小了很多,這意味着進一步增加了碰撞的機率,減慢了查詢的效率! 

 


          所以說,當數組長度爲2的n次冪的時候,不同的key算得得index相同的機率較小,那麼數據在數組上分佈就比較均勻,也就是說碰撞的機率小,相對的,查詢的時候就不用遍歷某個位置上的鏈表,這樣查詢效率也就較高了。 
          說到這裏,我們再回頭看一下hashmap中默認的數組大小是多少,查看源代碼可以得知是16,爲什麼是16,而不是15,也不是20呢,看到上面annegu的解釋之後我們就清楚了吧,顯然是因爲16是2的整數次冪的原因,在小數據量的情況下16比15和20更能減少key之間的碰撞,而加快查詢的效率。 

所以,在存儲大容量數據的時候,最好預先指定hashmap的size爲2的整數次冪次方。就算不指定的話,也會以大於且最接近指定值大小的2次冪來初始化的,代碼如下(HashMap的構造方法中):

Java代碼  收藏代碼

  1. // Find a power of 2 >= initialCapacity  
  2.         int capacity = 1;  
  3.         while (capacity < initialCapacity)   
  4.             capacity <<= 1;  
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章