隨想錄(windows上cuda環境安裝)

【 聲明:版權所有,歡迎轉載,請勿用於商業用途。  聯繫信箱:feixiaoxing @163.com】

 

    cuda是nvidia公司用於gpu開發的一門語言。它來自於c,但是又對c進行了擴展。目前cuda廣泛用於高性能計算、深度學習訓練、嵌入式設備等各種應用場景。然而cuda入門容易,深入困難,如果只是基本概念學習,不足以對其有深刻的認識,因此最好結合具體的代碼來一起開發,才能真正將gpu的作用發揮出來。

 

    因此,我查看了個人筆記本,雖然顯示的是nvidia mx150,一個比較低階的移動GPU版本,但是也可以用cuda進行開發。所以利用下午這一段時間,安裝了一下cuda環境,收穫很多。

 

1、安裝visual studio 2015

目前cuda支持vs2012、vs2013、vs2015、vs2017、vs2019。

 

2、下載cuda安裝包

可以選擇適合自己的cuda包,我這裏下載的是cuda_10.2.89_441.22_win10.exe

 

3、安裝cuda軟件

基本上不停的按下一步、下一步就可以了。中間cuda會先自解壓,然後再進行安裝。

 

4、確認cuda是否安裝成功

在cmd下面輸入nvcc --help,如果有打印信息,代表一切ok。

 

5、查找示例代碼

如果安裝沒有問題,在C:\ProgramData\NVIDIA Corporation\CUDA Samples會看到一個目錄,目錄下有很多的示例代碼。

 

6、編譯示例代碼

示例代碼很多,分別是0_Simple、1_Utilities、2_Graphics、3_Imaging、4_Finance、5_Simulations、6_Advanced、7_CUDALibraries。剛開始的時候可以只選擇編譯一部分內容,比如0_Simple,如果編譯、運行本身沒多大問題,說明我們的安裝是非常成功的。

 

7、簡單的示例代碼vectorAdd.cu

代碼內容就是一個向量的計算,比較簡潔,但是對我們瞭解cuda加速的原理足夠了。

/**
 * Copyright 1993-2015 NVIDIA Corporation.  All rights reserved.
 *
 * Please refer to the NVIDIA end user license agreement (EULA) associated
 * with this source code for terms and conditions that govern your use of
 * this software. Any use, reproduction, disclosure, or distribution of
 * this software and related documentation outside the terms of the EULA
 * is strictly prohibited.
 *
 */

/**
 * Vector addition: C = A + B.
 *
 * This sample is a very basic sample that implements element by element
 * vector addition. It is the same as the sample illustrating Chapter 2
 * of the programming guide with some additions like error checking.
 */

#include <stdio.h>

// For the CUDA runtime routines (prefixed with "cuda_")
#include <cuda_runtime.h>

#include <helper_cuda.h>
/**
 * CUDA Kernel Device code
 *
 * Computes the vector addition of A and B into C. The 3 vectors have the same
 * number of elements numElements.
 */
__global__ void
vectorAdd(const float *A, const float *B, float *C, int numElements)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;

    if (i < numElements)
    {
        C[i] = A[i] + B[i];
    }
}

/**
 * Host main routine
 */
int
main(void)
{
    // Error code to check return values for CUDA calls
    cudaError_t err = cudaSuccess;

    // Print the vector length to be used, and compute its size
    int numElements = 50000;
    size_t size = numElements * sizeof(float);
    printf("[Vector addition of %d elements]\n", numElements);

    // Allocate the host input vector A
    float *h_A = (float *)malloc(size);

    // Allocate the host input vector B
    float *h_B = (float *)malloc(size);

    // Allocate the host output vector C
    float *h_C = (float *)malloc(size);

    // Verify that allocations succeeded
    if (h_A == NULL || h_B == NULL || h_C == NULL)
    {
        fprintf(stderr, "Failed to allocate host vectors!\n");
        exit(EXIT_FAILURE);
    }

    // Initialize the host input vectors
    for (int i = 0; i < numElements; ++i)
    {
        h_A[i] = rand()/(float)RAND_MAX;
        h_B[i] = rand()/(float)RAND_MAX;
    }

    // Allocate the device input vector A
    float *d_A = NULL;
    err = cudaMalloc((void **)&d_A, size);

    if (err != cudaSuccess)
    {
        fprintf(stderr, "Failed to allocate device vector A (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE);
    }

    // Allocate the device input vector B
    float *d_B = NULL;
    err = cudaMalloc((void **)&d_B, size);

    if (err != cudaSuccess)
    {
        fprintf(stderr, "Failed to allocate device vector B (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE);
    }

    // Allocate the device output vector C
    float *d_C = NULL;
    err = cudaMalloc((void **)&d_C, size);

    if (err != cudaSuccess)
    {
        fprintf(stderr, "Failed to allocate device vector C (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE);
    }

    // Copy the host input vectors A and B in host memory to the device input vectors in
    // device memory
    printf("Copy input data from the host memory to the CUDA device\n");
    err = cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);

    if (err != cudaSuccess)
    {
        fprintf(stderr, "Failed to copy vector A from host to device (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE);
    }

    err = cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

    if (err != cudaSuccess)
    {
        fprintf(stderr, "Failed to copy vector B from host to device (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE);
    }

    // Launch the Vector Add CUDA Kernel
    int threadsPerBlock = 256;
    int blocksPerGrid =(numElements + threadsPerBlock - 1) / threadsPerBlock;
    printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock);
    vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);
    err = cudaGetLastError();

    if (err != cudaSuccess)
    {
        fprintf(stderr, "Failed to launch vectorAdd kernel (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE);
    }

    // Copy the device result vector in device memory to the host result vector
    // in host memory.
    printf("Copy output data from the CUDA device to the host memory\n");
    err = cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

    if (err != cudaSuccess)
    {
        fprintf(stderr, "Failed to copy vector C from device to host (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE);
    }

    // Verify that the result vector is correct
    for (int i = 0; i < numElements; ++i)
    {
        if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5)
        {
            fprintf(stderr, "Result verification failed at element %d!\n", i);
            exit(EXIT_FAILURE);
        }
    }

    printf("Test PASSED\n");

    // Free device global memory
    err = cudaFree(d_A);

    if (err != cudaSuccess)
    {
        fprintf(stderr, "Failed to free device vector A (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE);
    }

    err = cudaFree(d_B);

    if (err != cudaSuccess)
    {
        fprintf(stderr, "Failed to free device vector B (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE);
    }

    err = cudaFree(d_C);

    if (err != cudaSuccess)
    {
        fprintf(stderr, "Failed to free device vector C (error code %s)!\n", cudaGetErrorString(err));
        exit(EXIT_FAILURE);
    }

    // Free host memory
    free(h_A);
    free(h_B);
    free(h_C);

    printf("Done\n");
    return 0;
}

8、驗證是否可以從visual studio創建nvida工程

9、從windows到ubuntu開發環境

    windows上面的vs環境調試比較方便,整體使用比較容易。對於開發嵌入式設備的朋友來說,在移植到nvidia jetson ubuntu環境之前,最好還是在windows環境上優化好,這樣可以節省不少的時間。

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章