McGan: Mean and Covariance Feature Matching GAN

Mroueh Y, Sercu T, Goel V, et al. McGan: Mean and Covariance Feature Matching GAN[J]. arXiv: Learning, 2017.

@article{mroueh2017mcgan:,
title={McGan: Mean and Covariance Feature Matching GAN},
author={Mroueh, Youssef and Sercu, Tom and Goel, Vaibhava},
journal={arXiv: Learning},
year={2017}}

利用均值和協方差構建IPM, 獲得相應的mean GAN 和 covariance gan.

主要內容

IPM:
dF(P,Q)=supfFExPf(x)ExQf(x). d_{\mathscr{F}} (\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathscr{F}} |\mathbb{E}_{x \sim \mathbb{P}} f(x) - \mathbb{E}_{x \sim \mathbb{Q}} f(x)|.
F\mathscr{F}是對稱空間, 即fFfFf\in \mathscr{F} \rightarrow -f \in \mathscr{F},可得
dF(P,Q)=supfF{ExPf(x)ExQf(x)}. d_{\mathscr{F}} (\mathbb{P}, \mathbb{Q}) = \sup_{f \in \mathscr{F}} \big \{\mathbb{E}_{x \sim \mathbb{P}} f(x) - \mathbb{E}_{x \sim \mathbb{Q}} f(x) \big\}.

Mean Matching IPM

Fv,w,p:={f(x)=v,Φw(x)vRm,vp1,Φw:XRm,wΩ}, \mathscr{F}_{v,w,p}:= \{f(x)=\langle v, \Phi_w(x) \rangle | v\in \mathbb{R}^m, \|v\|_p \le 1, \Phi_w:\mathcal{X} \rightarrow \mathbb{R}^m, w \in \Omega\},
其中p\|\cdot \|_p表示p\ell_p範數, Φw\Phi_w往往用網絡來表示, 我們可通過截斷ww來使得Fv,w,p\mathscr{F}_{v,w,p}爲有界線性函數空間(有界從而使得後面推導中sup\sup成爲max\max).

在這裏插入圖片描述
其中
μw(P)=ExP[Φw(x)]Rm. \mu_w(\mathbb{P})= \mathbb{E}_{x \sim \mathbb{P}} [\Phi_w(x)] \in \mathbb{R}^m.

最後一個等式的成立是因爲:
x=max{v,xv1}, \|x\|_* = \max \{\langle v, x \rangle | \|v\| \le 1\},
p\| \cdot \|_p的對偶範數是q,1p+1q=1\|\cdot\|_q, \frac{1}{p}+\frac{1}{q}=1.

prime

整個GAN的訓練過程即爲
mingθmaxwΩmaxv,vp1Lμ(v,w,θ),(3) \tag{3} \min_{g_\theta} \max_{w \in \Omega} \max_{v, \|v\|_p \le 1} \mathscr{L}_{\mu} (v,w,\theta),
其中
Lμ(v,w,θ)=v,ExPrΦw(x)Ezp(z)Φw(gθ(z)). \mathscr{L}_{\mu} (v,w,\theta) = \langle v, \mathbb{E}_{x \in \mathbb{P}_r} \Phi_w(x) - \mathbb{E}_{z \sim p(z)} \Phi_w(g_{\theta} (z)) \rangle.

估計形式爲
在這裏插入圖片描述

dual

也有對應的dual形態
mingθmaxwΩμw(Pr)μw(Pθ)q.(4) \tag{4} \min_{g_\theta} \max_{w \in \Omega} \|\mu_w(\mathbb{P}_r) - \mu_w (\mathbb{P}_{\theta})\|_q.

在這裏插入圖片描述

Covariance Feature Matching IPM

FU,V,w:={f(x)=j=1kuj,Φw(x)vj,Φw(x),ui,uj=vi,vj=0,ij,else1}, \mathscr{F}_{U, V,w} := \{f(x)= \sum_{j=1}^k \langle u_j, \Phi_w(x) \rangle \langle v_j, \Phi_w(x)\rangle, \langle u_i, u_j \rangle = \langle v_i, v_j \rangle =0, i \not = j, else \:1 \},
等價於
FU,V,w:={f(x)=UTΦw(x),VTΦw(x),UTU=Ik,VTV=Ik,wΩ}. \mathscr{F}_{U, V,w} := \{f(x)= \langle U^T \Phi_w(x), V^T\Phi_w(x) \rangle, U^TU=I_k, V^TV=I_k, w \in \Omega \}.

並有
在這裏插入圖片描述

其中[A]k[A]_k表示AAkk階近似, 如果A=iσiuiviTA = \sum_i \sigma_iu_iv_i^T, σ1σ2,\sigma_1\ge \sigma_2,\ldots, 則[A]k=i=1kσiuiviT[A]_k=\sum_{i=1}^k \sigma_i u_iv_i^T. Om,k:={MRm×kMTM=Ik}\mathcal{O}_{m,k} := \{M \in \mathbb{R}^{m \times k} | M^TM = I_k \}, A=iσi\|A\|_*=\sum_i \sigma_i表示算子範數.

prime

mingθmaxwΩmaxU,VPm,kLσ(U,V,w,θ),(6) \tag{6} \min_{g_\theta} \max_{w \in \Omega} \max_{U,V \in \mathcal{P}_{m, k}} \mathscr{L}_{\sigma} (U, V,w,\theta),
其中
Lσ(U,V,w,θ)=ExPrUTΦw(x),VTΦw(x)EzpzUTΦw(gθ(z)),VTΦw(gθ(z)). \mathscr{L}_{\sigma} (U,V,w,\theta) = \mathbb{E}_{x \sim \mathbb{P}_r} \langle U^T \Phi_w(x), V^T\Phi_w(x) \rangle- \mathbb{E}_{z \sim p_z} \langle U^T \Phi_w(g_{\theta}(z)), V^T\Phi_w(g_{\theta}(z)) \rangle.

採用下式估計

在這裏插入圖片描述

dual

mingθmaxwΩ[Σw(Pr)Σw(Pθ)]k.(7) \tag{7} \min_{g_{\theta}} \max_{w \in \Omega} \| [\Sigma_w(\mathbb{P}_r) - \Sigma_w(\mathbb{P}_{\theta})]_k\|_*.

注: 既然Σw(Pr)Σw(Pθ)\Sigma_w(\mathbb{P}_r) - \Sigma_w(\mathbb{P}_{\theta})是對稱的, 爲什麼UVU \not =V? 因爲雖然其對稱, 但是並不(半)正定, 所以vi=uiv_i=-u_i也是有可能的.

算法

在這裏插入圖片描述
在這裏插入圖片描述

在這裏插入圖片描述

代碼

未經測試.



import torch
import torch.nn as nn
from torch.nn.functional import relu
from collections.abc import Callable



def preset(**kwargs):
    def decorator(func):
        def wrapper(*args, **nkwargs):
            nkwargs.update(kwargs)
            return func(*args, **nkwargs)
        wrapper.__doc__ = func.__doc__
        wrapper.__name__ = func.__name__
        return wrapper
    return decorator


class Meanmatch(nn.Module):

    def __init__(self, p, dim, dual=False, prj='l2'):
        super(Meanmatch, self).__init__()
        self.norm = p
        self.dual = dual
        if dual:
            self.dualnorm = self.norm
        else:
            self.init_weights(dim)
            self.projection = self.proj(prj)


    @property
    def dualnorm(self):
        return self.__dualnorm

    @dualnorm.setter
    def dualnorm(self, norm):
        if norm == 'inf':
            norm = float('inf')
        elif not isinstance(norm, float):
            raise ValueError("Invalid norm")

        p = 1 / (1 - 1 / norm)
        self.__dualnorm = preset(p=p, dim=1)(torch.norm)


    def init_weights(self, dim):
        self.weights = nn.Parameter(torch.rand((1, dim)),
                                    requires_grad=True)

    @staticmethod
    def _proj1(x):
        u = x.max()
        if u <= 1.:
            return x
        l = 0.
        c = (u + l) / 2
        while (u - l) > 1e-4:
            r = relu(x - c).sum()
            if r > 1.:
                l = c
            else:
                u = c
            c = (u + l) / 2
        return relu(x - c)

    @staticmethod
    def _proj2(x):
        return x / torch.norm(x)

    @staticmethod
    def _proj3(x):
        return x / torch.max(x)

    def proj(self, prj):
        if prj == "l1":
            return self._proj1
        elif prj == "l2":
            return self._proj2
        elif prj == "linf":
            return self._proj3
        else:
            assert isinstance(prj, Callable), "Invalid prj"
            return prj



    def forward(self, real, fake):
        temp = (real - fake).mean(dim=1)
        if self.dual:
            return self.dualnorm(temp)
        elif not self.training and self.dual:
            raise TypeError("just for training...")
        else:
            self.weights.data = self.projection(self.weights.data) #some diff here!!!!!!!!!!
            return self.weights @ temp



class Covmatch(nn.Module):

    def __init__(self, dim, k):
        super(Covmatch, self).__init__()
        self.init_weights(dim, k)

    def init_weights(self, dim, k):
        temp1 = torch.rand((dim, k))
        temp2 = torch.rand((dim, k))
        self.U = nn.Parameter(temp1, requires_grad=True)
        self.V = nn.Parameter(temp2, requires_grad=True)

    def qr(self, w):
        q, r = torch.qr(w)
        sign = r.diag().sign()
        return q * sign

    def update_weights(self):
        self.U.data = self.qr(self.U.data)
        self.V.data = self.qr(self.V.data)

    def forward(self, real, fake):
        self.update_weights()
        temp1 = real @ self.U
        temp2 = real @ self.V
        temp3 = fake @ self.U
        temp4 = fake @ self.V
        part1 = torch.trace(temp1 @ temp2.t()).mean()
        part2 = torch.trace(temp3 @ temp4.t()).mean()
        return part1 - part2


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章