九種算法整理

穩定性:如果相同元素排序前後的順序不變,說明該算法是穩定的.

時間開銷:數據比較次數與數據移動次數來衡量.

空間開銷:執行算法順序時的附加存儲開銷.忽略常數,用O(1)表示 

1.選擇排序(Selection-sort)是一種簡單直觀的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然後,再從剩餘未排序元素中繼續尋找最小(大)元素,然後放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。表現最穩定的排序算法之一,因爲無論什麼數據進去都是O(n2)的時間複雜度,所以用到它的時候,數據規模越小越好。

2.冒泡排序思想:冒泡排序 ,假設有N個數,遊標從第一位數開始,若左邊的數比右邊的數大,則左邊交換,遊標移向下一位直到最後一位。在遊標移動過程中,可以保證,右邊的數一定比左邊的數大,因爲第一輪遍歷是要找出最大的數並且最大的數在最後一位。同理,要找出第二大的數,重複上述過程,直至找出第N大的數,排序結束。因此時間複雜度是N*N,空間複雜度是N。這裏要注意比較次數的優化。時間複雜度最佳情況:T(n) = O(n) 最差情況:T(n) = O(n2) 平均情況:T(n) = O(n2)

3.直接插入排序:插入排序(Insertion-Sort)的算法描述是一種簡單直觀的排序算法。它的工作原理是通過構建有序序列,對於未排序數據,在已排序序列中從後向前掃描,找到相應位置並插入。插入排序在實現上,通常採用in-place排序(即只需用到O(1)的額外空間的排序),因而在從後向前掃描過程中,需要反覆把已排序元素逐步向後挪位,爲最新元素提供插入空間。時間複雜度最佳情況:T(n) = O(n) 最壞情況:T(n) = O(n2) 平均情況:T(n) = O(n2)

in-place操作,意思是所有的操作都是”就地“操作,或者稱作 原位操作,即不允許使用臨時變量。

算法描述

從第一個元素開始,該元素可以認爲已經被排序;
取出下一個元素,在已經排序的元素序列中從後向前掃描;
如果該元素(已排序)大於新元素,將該元素移到下一位置;
重複步驟3,直到找到已排序的元素小於或者等於新元素的位置;
將新元素插入到該位置後;
重複步驟2~5。

4.希爾排序是希爾(Donald Shell)於1959年提出的一種排序算法。希爾排序也是一種插入排序,它是簡單插入排序經過改進之後的一個更高效的版本,也稱爲縮小增量排序,同時該算法是衝破O(n2)的第一批算法之一。它與插入排序的不同之處在於,它會優先比較距離較遠的元素。希爾排序又叫縮小增量排序。https://blog.csdn.net/ThinkWon/article/details/101538166

最佳情況:T(n) = O(nlog2 n) 最壞情況:T(n) = O(nlog2 n) 平均情況:T(n) =O(nlog2n)

算法描述
我們來看下希爾排序的基本步驟,在此我們選擇增量gap=length/2,縮小增量繼續以gap = gap/2的方式,這種增量選擇我們可以用一個序列來表示,{n/2,(n/2)/2…1},稱爲增量序列。希爾排序的增量序列的選擇與證明是個數學難題,我們選擇的這個增量序列是比較常用的,也是希爾建議的增量,稱爲希爾增量,但其實這個增量序列不是最優的。此處我們做示例使用希爾增量。

先將整個待排序的記錄序列分割成爲若干子序列分別進行直接插入排序,具體算法描述:

選擇一個增量序列t1,t2,…,tk,其中ti>tj,tk=1;
按增量序列個數k,對序列進行k 趟排序;
每趟排序,根據對應的增量ti,將待排序列分割成若干長度爲m 的子序列,分別對各子表進行直接插入排序。僅增量因子爲1 時,整個序列作爲一個表來處理,表長度即爲整個序列的長度。
過程演示

5.快速排序的基本思想:通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。最佳情況:T(n) = O(nlogn) 最差情況:T(n) = O(n2) 平均情況:T(n) = O(nlogn)

算法描述
快速排序使用分治法來把一個串(list)分爲兩個子串(sub-lists)。具體算法描述如下:

從數列中挑出一個元素,稱爲 “基準”(pivot);
重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱爲分區(partition)操作;
遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。

6.歸併排序:和選擇排序一樣,歸併排序的性能不受輸入數據的影響,但表現比選擇排序好的多,因爲始終都是O(n log n)的時間複雜度。代價是需要額外的內存空間。

歸併排序是建立在歸併操作上的一種有效的排序算法。該算法是採用分治法(Divide and Conquer)的一個非常典型的應用。歸併排序是一種穩定的排序方法。將已有序的子序列合併,得到完全有序的序列;即先使每個子序列有序,再使子序列段間有序。若將兩個有序表合併成一個有序表,稱爲2-路歸併。

最佳情況:T(n) = O(n) 最差情況:T(n) = O(nlogn) 平均情況:T(n) = O(nlogn)

算法描述

  • 把長度爲n的輸入序列分成兩個長度爲n/2的子序列;
  • 對這兩個子序列分別採用歸併排序;
  • 將兩個排序好的子序列合併成一個最終的排序序列。

7.堆排序:堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序算法。堆是具有以下性質的完全二叉樹:每個結點的值都大於或等於其左右孩子結點的值,稱爲大頂堆;或者每個結點的值都小於或等於其左右孩子結點的值,稱爲小頂堆。

 

該數組從邏輯上講就是一個堆結構,我們用簡單的公式來描述一下堆的定義就是:

大頂堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]  

小頂堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]  

構建大頂堆:以最後一個非葉子節點爲根構建大頂堆,遞減後繼續構建其他節點,然後以此類推直到整個樹的根,最後整個樹就是大頂堆。

堆排序的基本思想是:將待排序序列構造成一個大頂堆,此時,整個序列的最大值就是堆頂的根節點。將其與末尾元素進行交換,此時末尾就爲最大值。然後將剩餘n-1個元素重新構造成一個堆,這樣會得到n個元素的次小值。如此反覆執行,便能得到一個有序序列了最佳情況:T(n) = O(nlogn) 最差情況:T(n) = O(nlogn) 平均情況:T(n) = O(nlogn)

 

8.計數排序:

計數排序的核心在於將輸入的數據值轉化爲鍵存儲在額外開闢的數組空間中。 作爲一種線性時間複雜度的排序,計數排序要求輸入的數據必須是有確定範圍的整數。

計數排序(Counting sort)是一種穩定的排序算法。計數排序使用一個額外的數組C,其中第i個元素是待排序數組A中值等於i的元素的個數。然後根據數組C來將A中的元素排到正確的位置。它只能對整數進行排序。.當數列最大最小值差距過大時,並不適用於計數排序,當數列元素不是整數時,並不適用於計數排序。

算法描述

  • 找出待排序的數組中最大和最小的元素;
  • 統計數組中每個值爲i的元素出現的次數,存入數組C的第i項;
  • 對所有的計數累加(從C中的第一個元素開始,每一項和前一項相加);
  • 反向填充目標數組:將每個元素i放在新數組的第C(i)項,每放一個元素就將C(i)減去1。

桶排序:桶排序是計數排序的升級版。它利用了函數的映射關係,高效與否的關鍵就在於這個映射函數的確定。桶排序 (Bucket sort)的工作的原理:假設輸入數據服從均勻分佈,將數據分到有限數量的桶裏,每個桶再分別排序(有可能再使用別的排序算法或是以遞歸方式繼續使用桶排序進行排。映射函數必須做到:如果關鍵字k1<k2,那麼f(k1)<=f(k2)。也就是說B(i)中的最大數據都要小於B(i+1)中最小數據。如果輸入數據非常龐大,而桶的數量也非常多,則空間代價無疑是昂貴的。最佳情況:T(n) = O(n+k) 最差情況:T(n) = O(n+k) 平均情況:T(n) = O(n2)

桶排序最好情況下使用線性時間O(n),桶排序的時間複雜度,取決與對各個桶之間數據進行排序的時間複雜度,因爲其它部分的時間複雜度都爲O(n)。很顯然,桶劃分的越小,各個桶之間的數據越少,排序所用的時間也會越少。但相應的空間消耗就會增大。

算法描述
人爲設置一個BucketSize,作爲每個桶所能放置多少個不同數值(例如當BucketSize==5時,該桶可以存放{1,2,3,4,5}這幾種數字,但是容量不限,即可以存放100個3);
遍歷輸入數據,並且把數據一個一個放到對應的桶裏去;
對每個不是空的桶進行排序,可以使用其它排序方法,也可以遞歸使用桶排序;
從不是空的桶裏把排好序的數據拼接起來。
注意,如果遞歸使用桶排序爲各個桶排序,則當桶數量爲1時要手動減小BucketSize增加下一循環桶的數量,否則會陷入死循環,導致內存溢出。

基數排序:基數排序也是非比較的排序算法,對每一位進行排序,從最低位開始排序,複雜度爲O(kn),n爲數組長度,k爲數組中的數的最大的位數.

基數排序是按照低位先排序,然後收集;再按照高位排序,然後再收集;依次類推,直到最高位。有時候有些屬性是有優先級順序的,先按低優先級排序,再按高優先級排序。最後的次序就是高優先級高的在前,高優先級相同的低優先級高的在前。基數排序基於分別排序,分別收集,所以是穩定的。最佳情況:T(n) = O(n * k) 最差情況:T(n) = O(n * k) 平均情況:T(n) = O(n * k)

算法描述

  • 取得數組中的最大數,並取得位數;
  • arr爲原始數組,從最低位開始取每個位組成radix數組;
  • 對radix進行計數排序(利用計數排序適用於小範圍數的特點)

基數排序有兩種方法:

MSD 從高位開始進行排序 LSD 從低位開始進行排序

基數排序 vs 計數排序 vs 桶排序

這三種排序算法都利用了桶的概念,但對桶的使用方法上有明顯差異:

基數排序:根據鍵值的每位數字來分配桶
計數排序:每個桶只存儲單一鍵值
桶排序:每個桶存儲一定範圍的數值

二分(折半)查找:數組有序,定義最大索引,最小索引,計算中間索引,拿中間索引值和要查找的值比,大了左邊找,設置最大爲中間索引減一,如果小了右邊找,設置最小索引爲中間加一,然後重新查找。如果不是有序的,排序後查找的不是原始的索引。

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章