常用代码模板3——搜索与图论(Bellman-Ford算法 、spfa 算法、floyd算法、Kruskal算法、染色法、匈牙利算法 )

目录

一、树与图的存储

二、树与图的遍历

(1) 深度优先遍历 —— 模板题 AcWing 846. 树的重心

(2) 宽度优先遍历 —— 模板题 AcWing 847. 图中点的层次

拓扑排序 —— 模板题 AcWing 848. 有向图的拓扑序列

三、树与图的最短路问题

Bellman-Ford算法 —— 模板题 AcWing 853. 有边数限制的最短路

spfa 算法(队列优化的Bellman-Ford算法)

spfa判断图中是否存在负环 —— 模板题 AcWing 852. spfa判断负环

floyd算法 —— 模板题 AcWing 854. Floyd求最短路

四、最小生成树和二分图

Kruskal算法 —— 模板题 AcWing 859. Kruskal算法求最小生成树

染色法判别二分图 —— 模板题 AcWing 860. 染色法判定二分图

匈牙利算法 —— 模板题 AcWing 861. 二分图的最大匹配


 

 

一、树与图的存储

树是一种特殊的图,与图的存储方式相同。对于无向图中的边ab,存储两条有向边a->b, b->a。
因此我们可以只考虑有向图的存储。

  • (1) 邻接矩阵:g[a][b] 存储边a->b
  • (2) 邻接表:
// 对于每个点k,开一个单链表,存储k所有可以走到的点。h[k]存储这个单链表的头结点
int h[N], e[N], ne[N], idx;

// 添加一条边a->b
void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

// 初始化
idx = 0;
memset(h, -1, sizeof h);

 


二、树与图的遍历

 

时间复杂度 O(n+m), n 表示点数,m 表示边数

int dfs(int u)
{
    st[u] = true; // st[u] 表示点u已经被遍历过

    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j]) dfs(j);
    }
}

时间复杂度 O(n+m), n 表示点数,m 表示边数

queue<int> q;  // 将要遍历的点放入队列
st[1] = true;  // 表示1号点已经被遍历过
q.push(1);

while (q.size())
{
    int t = q.front();
    q.pop();

    for (int i = h[t]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!s[j])
        {
            st[j] = true; // 表示点j已经被遍历过
            q.push(j);
        }
    }
}

时间复杂度 O(n+m), n 表示点数,m 表示边数

若一个由图中所有点构成的序列A满足:对于图中的每条边(x, y),x在A中都出现在y之前,则称A是该图的一个拓扑序列。

由于需要输出拓扑序列,如果用stl的queue,需要出队入队,就不好记录,这里就用邻接表

bool topsort()
{
    int hh = 0, tt = -1;

    // d[i] 存储点i的入度

    // 找到是起点的点,入度是0
    for (int i = 1; i <= n; i ++ )
        if (!d[i])
            q[ ++ tt] = i;

    while (hh <= tt)
    {
        int t = q[hh ++ ];

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (-- d[j] == 0)
                q[ ++ tt] = j;
        }
    }

    // 如果所有点都入队了,说明存在拓扑序列;否则不存在拓扑序列。
    return tt == n - 1;
}

 


三、树与图的最短路问题

由于那么多算法模板太难记了!!!我就不总结dijkstra算法了,因为SPFA也能做,而且快

 

注意在模板题中需要对下面的模板稍作修改,加上备份数组,详情见模板题。

原理:

Bellman - ford算法是求含负权图的单源最短路径的一种算法,效率较低,代码难度较小。其原理为连续进行松弛,在每次松弛时把每条边都更新一下,若在n-1次松弛后还能更新,则说明图中有负环,因此无法得出结果,否则就完成。

(通俗的来讲就是:假设1号点到n号点是可达的,每一个点同时向指向的方向出发,更新相邻的点的最短距离,通过循环n-1次操作,若图中不存在负环,则1号点一定会到达n号点,若图中存在负环,则在n-1次松弛后一定还会更新)

具体步骤:

for n次            (n代表经过的边数,若题中要求最多不能超过k调边,则n为k)
      for 所有边 a,b,w     (松弛操作)
             dist[b] = min(dist[b],back[a] + w)

注意:使用backup数组的目的是为了防止松弛的次数大于k,back[]数组是上一次迭代后dist[]数组的备份,由于是每个点同时向外出发,因此需要对dist[]数组进行备份,若不进行备份会因此发生串联效应,影响到下一个点

模板:

int n, m;           // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge         // 边,a表示出点,b表示入点,w表示边的权重
{
    int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
            if (dist[b] > dist[a] + w)
                dist[b] = dist[a] + w;
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

 

 

  • spfa 算法(队列优化的Bellman-Ford算法)

时间复杂度平均情况下 O(m),最坏情况下 O(nm), n 表示点数,m 表示边数

SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环。

spfa算法对第二行中所有边进行松弛操作进行了优化,原因是在bellman—ford算法中,即使该点的最短距离尚未更新过,但还是需要用尚未更新过的值去更新其他点,由此可知,该操作是不必要的,我们只需要找到更新过的值去更新其他点即可。

具体步骤:

queue <–   1                                                  (第一个点入队)
while queue 不为空
         t <– 队头
         queue.pop()
          for (int i = h[t] ; i != -1 ; i = ne[i])          (用 t 更新所有出边 t –> j,权值为w )
                      queue <–  j                               (若该点被更新过,则拿该点更新其他点)

spfa也能解决权值为正的图的最短距离问题,且一般情况下比Dijkstra算法还好

模板:

int n;                      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N];                // 存储每个点到1号点的最短距离
bool st[N];                 // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

    queue<int> q;
    q.push(1);
    st[1] = true;

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                if (!st[j])     // 如果队列中已存在j,则不需要将j重复插入
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    if (dist[n] == 0x3f3f3f3f) return -1;
    return dist[n];
}    

 

原理:

如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

模板:

int n;                      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];                 // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
    // 不需要初始化dist数组

    queue<int> q;
    for (int i = 1; i <= n; i ++ )
    {
        q.push(i);
        st[i] = true;
    }

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    return false;
}

 

 

模板:

初始化:
    for (int i = 1; i <= n; i ++ )
        for (int j = 1; j <= n; j ++ )
            if (i == j) d[i][j] = 0;
            else d[i][j] = INF;


// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
    for (int k = 1; k <= n; k ++ )
        for (int i = 1; i <= n; i ++ )
            for (int j = 1; j <= n; j ++ )
                d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

输出的时候:
 if(d[x][y] > INF/2) puts("impossible");    
 //由于有负权边存在所以约大过INF/2也很合理   INF = 0x3f3f3f3f
 else cout << d[x][y] << endl;

 


四、最小生成树和二分图

对于最小生成树问题:我只背kruskal算法,好理解些,反正也要背 并查集。

对于二分图问题:如果是判断是不是二分图就用染色法,如果是求最大匹配对数就用匈牙利算法。

 

int n, m;       // n是点数,m是边数
int p[N];       // 并查集的父节点数组

struct Edge     // 存储边
{
    int a, b, w;

    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)     // 并查集核心操作
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

    int res = 0, cnt = 0;
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }
    }

    if (cnt < n - 1) return INF;
    return res;
}

 

int n;      // n表示点数
int h[N], e[M], ne[M], idx;     // 邻接表存储图
int color[N];       // 表示每个点的颜色,-1表示为染色,0表示白色,1表示黑色

// 参数:u表示当前节点,c表示当前点的颜色
bool dfs(int u, int c)
{
    color[u] = c;
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (color[j] == -1)
        {
            if (!dfs(j, !c)) return false;
        }
        else if (color[j] == c) return false;
    }

    return true;
}

bool check()
{
    memset(color, -1, sizeof color);
    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        if (color[i] == -1)
            if (!dfs(i, 0))
            {
                flag = false;
                break;
            }
    return flag;
}

 

算法描述:
如果你想找的妹子已经有了男朋友,
你就去问问她男朋友,
你有没有备胎,
把这个让给我好吧

多么真实而实用的算法

TIP: 因为你要去问的都是男孩子,所以存边的时候,都是由男孩子指向女孩子

下面用一个gif动图来演示这个整个配对的递归过程:

模板:

int n1, n2;     // n1表示第一个集合中的点数,n2表示第二个集合中的点数
int h[N], e[M], ne[M], idx;     // 邻接表存储所有边,匈牙利算法中只会用到从第一个集合指向第二个集合的边,所以这里只用存一个方向的边
int match[N];       // 存储第二个集合中的每个点当前匹配的第一个集合中的点是哪个
bool st[N];     // 表示第二个集合中的每个点是否已经被遍历过

bool find(int x)
{
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        if (!st[j])
        {
            st[j] = true;
            if (match[j] == 0 || find(match[j]))
            {
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

// 求最大匹配数,依次枚举第一个集合中的每个点能否匹配第二个集合中的点
int res = 0;
for (int i = 1; i <= n1; i ++ )
{
    memset(st, false, sizeof st);
    if (find(i)) res ++ ;
}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章