ext4之super.c

super.c是ext4里非常重要的文件,挂载时候运行的代码基本上都在super.c里边,如果super.c有一点代码上的bug的话,那么一个块设备就不能被以ext4文件系统挂载。我在比较重要的地方都加了注释讲解,如果有认为我没写详细或者写错的朋友们欢迎指出。

/*
 *  linux/fs/ext4/super.c
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card ([email protected])
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 * 好熟悉的人,我记得当初看ext2的时候作者也是这个人,巴黎第五大学的god
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller ([email protected]), 1995
 */

#include <linux/module.h>
#include <linux/string.h>
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/jbd2.h>
#include <linux/ext4_fs.h>
#include <linux/ext4_jbd2.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/parser.h>
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>
#include <linux/vfs.h>
#include <linux/random.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/quotaops.h>
#include <linux/seq_file.h>

#include <asm/uaccess.h>

#include "xattr.h"
#include "acl.h"
#include "namei.h"

/* super.c里会使用到的函数的声明 */
static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
			     unsigned long journal_devnum);
static int ext4_create_journal(struct super_block *, struct ext4_super_block *,
			       unsigned int);
static void ext4_commit_super (struct super_block * sb,
			       struct ext4_super_block * es,
			       int sync);
static void ext4_mark_recovery_complete(struct super_block * sb,
					struct ext4_super_block * es);
static void ext4_clear_journal_err(struct super_block * sb,
				   struct ext4_super_block * es);
static int ext4_sync_fs(struct super_block *sb, int wait);
static const char *ext4_decode_error(struct super_block * sb, int errno,
				     char nbuf[16]);
static int ext4_remount (struct super_block * sb, int * flags, char * data);
static int ext4_statfs (struct dentry * dentry, struct kstatfs * buf);
static void ext4_unlockfs(struct super_block *sb);
static void ext4_write_super (struct super_block * sb);
static void ext4_write_super_lockfs(struct super_block *sb);

/* 根据ext4的超级块的块号以及对应组的组描述符获得数据块位图的所在块号 */
ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
			       struct ext4_group_desc *bg)
{
	/* ext4是用的小端字节序,所以需要先转换成本机的cpu字节序然后才能和内存里的数进行比较加减等操作,下同。 */
	/* 组描述符结构体里的bg_block_bitmap字段表示数据块所在的位置,EXT4_DESC_SIZE这个宏返回组描述符的大小,如果大于EXT4_MIN_DESC_SIZE_64BIT,就是大于64位的最小大小,说明是用64位来表示的,就把高32位也或上,这主要是为了应对有的文件系统块的数目太多32位已经表述不下来的情况 */
	return le32_to_cpu(bg->bg_block_bitmap) |
		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
}
/* 根据ext4的超级块的块号以及对应组的组描述符获得inode位图的所在块号 */
ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
			       struct ext4_group_desc *bg)
{
	/* 组描述符结构体里的bg_inode_bitmap字段表示存放inode的块所在的位置,EXT4_DESC_SIZE这个宏返回组描述符的大小,如果大于EXT4_MIN_DESC_SIZE_64BIT,就是大于64位的最小大小,说明是用64位来表示的,就把高32位也或上,这主要是为了应对有的文件系统块的数目太多32位已经表述不下来的情况 */
	return le32_to_cpu(bg->bg_inode_bitmap) |
		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
}
/* 根据ext4的超级块的块号以及对应组的组描述符获得inode table的开始块号 */
ext4_fsblk_t ext4_inode_table(struct super_block *sb,
			      struct ext4_group_desc *bg)
{
	/* 组描述符结构体里的bg_inode_table字段表示inode table的开始块所在的位置,EXT4_DESC_SIZE这个宏返回组描述符的大小,如果大于EXT4_MIN_DESC_SIZE_64BIT,就是大于64位的最小大小,说明是用64位来表示的,就把高32位也或上,这主要是为了应对有的文件系统块的数目太多32位已经表述不下来的情况 */
	return le32_to_cpu(bg->bg_inode_table) |
		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
}
/* 对块组描述符结构体的bg_block_bitmap字段赋值为blk */
void ext4_block_bitmap_set(struct super_block *sb,
			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
	/* 把blk转换成cpu字节序赋值给块组描述符的bg_block_bitmap,如果文件系统支持64位的,就把bg_block_bitmap_hi也就是高32位也赋值 */
	bg->bg_block_bitmap = cpu_to_le32((u32)blk);
	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
}
/* 对块组描述符结构体的bg_inode_bitmap字段赋值为blk,就是赋值inode位图所在块的赋值 */
void ext4_inode_bitmap_set(struct super_block *sb,
			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
	/* 把blk转换成cpu字节序赋值给块组描述符的bg_inode_bitmap,如果文件系统支持64位的,就把bg_inode_bitmap_hi也就是高32位也赋值 */
	bg->bg_inode_bitmap  = cpu_to_le32((u32)blk);
	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
}
/* 对块组描述符结构体的bg_inode_table字段赋值为blk,就是inode table开始块的赋值 */
void ext4_inode_table_set(struct super_block *sb,
			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
	/* 把blk转换成cpu字节序赋值给块组描述符的bg_inode_bitmap,如果文件系统支持64位的,就把bg_inode_bitmap_hi也就是高32位也赋值 */
	bg->bg_inode_table = cpu_to_le32((u32)blk);
	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
}

/*
 * ext4对于jbd2_journal_start/end的封装,参数nblocks表示这次日志记录可能修改的块的数目
 * journal其实是内核里的另外一个模块实现的,ext4这里仅仅是调用了journal模块的接口,在2.6.19内核版本里使用的是journal2,也就是jbd2。
 * 对于ext4封装的日志函数而言,我们唯一需要做的特殊的事情就是确保journal_end 的调用函数的结果在superblock里,需要标记为脏所以sync()就在合适的时候会调用文件系统的write_super回调函数。
 */
handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
{
	journal_t *journal;
	/* 如果文件系统是制度挂载的话,不支持日志,一般只读挂载都是出错了 */
	if (sb->s_flags & MS_RDONLY)
		return ERR_PTR(-EROFS);

	/* 这里如果日志aborted的,我们需要报错,如果日志没有aborted状态,我们直接调用jbd2模块的函数jbd2_journal_start 来货的日志句柄 */
	journal = EXT4_SB(sb)->s_journal;
	if (is_journal_aborted(journal)) {
		ext4_abort(sb, __FUNCTION__,
			   "Detected aborted journal");
		return ERR_PTR(-EROFS);
	}

	return jbd2_journal_start(journal, nblocks);
}

/* 对于jbd2_journal_stop的封装,做一些基本的检查以后就调用jbd2_journal_stop函数。
 * 我们唯一需要做的特殊的事情就是确保journal_end 的调用函数的结果在superblock里,需要标记为脏所以sync()就在合适的时候会调用文件系统的write_super回调函数。
 */
int __ext4_journal_stop(const char *where, handle_t *handle)
{
	struct super_block *sb;
	int err;
	int rc;

	sb = handle->h_transaction->t_journal->j_private;
	err = handle->h_err;
	rc = jbd2_journal_stop(handle);

	if (!err)
		err = rc;
	if (err)
		__ext4_std_error(sb, where, err);
	return err;
}
/* 中途停止日志首先打印出错误信息,然后调用jbd2的jbd2_journal_abort_handle函数来停止日志 */
void ext4_journal_abort_handle(const char *caller, const char *err_fn,
		struct buffer_head *bh, handle_t *handle, int err)
{
	/* 从err获得错误信息 */
	char nbuf[16];
	const char *errstr = ext4_decode_error(NULL, err, nbuf);

	/* befferhead记录错误信息 */
	if (bh)
		BUFFER_TRACE(bh, "abort");

	/* 记录错误值在句柄中 */
	if (!handle->h_err)
		handle->h_err = err;
	/* 如果句柄所在的事务已经被终止了,我们就不必再次终止了 */
	if (is_handle_aborted(handle))
		return;

	printk(KERN_ERR "%s: aborting transaction: %s in %s\n",
	       caller, errstr, err_fn);

	jbd2_journal_abort_handle(handle);
}

/* 当ext4报错误的时候的处理函数,比如一些一致性错误或者是读写的IO错误。
 * 在ext2上,我们把一些错误状态字存储在超级块里。但是在ext4,这不可能,因为我们可能有写入顺序限制在超级块上,这个限制将会阻止我们写入,考虑到日志将要终止的情况,我们不能依赖以后。
 * 我们使用jbd2_journal_abort()获得的错误码来记录错误,在恢复的时候日志将会报错误,直到我们清除这个错误记录。 */

static void ext4_handle_error(struct super_block *sb)
{
	/* 首先从超级块结构体获得磁盘上存储的ext4超级块结构体 */
	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
	/* 挂载状态标记为错误发生状态 */
	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
	/* 如果已经是只读挂载了,我们就不必继续操作了 */
	if (sb->s_flags & MS_RDONLY)
		return;
	/* 如果不是挂载选项是出错以后继续,那么就停止一切事务 */
	if (!test_opt (sb, ERRORS_CONT)) {
		journal_t *journal = EXT4_SB(sb)->s_journal;

		EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT;
		if (journal)
			jbd2_journal_abort(journal, -EIO);
	}
	/* 如果fs是标记未,如果有错误,重新挂载为只读的情况,我们就重新挂载为只读 */
	if (test_opt (sb, ERRORS_RO)) {
		printk (KERN_CRIT "Remounting filesystem read-only\n");
		sb->s_flags |= MS_RDONLY;
	}
	/* 提交超级块的修改 */
	ext4_commit_super(sb, es, 1);
	/* 如果挂载选项是出错就panic,打印出panic信息 */
	if (test_opt(sb, ERRORS_PANIC))
		panic("EXT4-fs (device %s): panic forced after error\n",
			sb->s_id);
}
/* 调用上边的函数处理错误,在此之前打印出错误信息 */
void ext4_error (struct super_block * sb, const char * function,
		 const char * fmt, ...)
{
	va_list args;
	/* 先打印出错误信息 */
	va_start(args, fmt);
	printk(KERN_CRIT "EXT4-fs error (device %s): %s: ",sb->s_id, function);
	vprintk(fmt, args);
	printk("\n");
	va_end(args);
	/* 然后处理错误 */
	ext4_handle_error(sb);
}
/* 根据错误编号返回相应的错误信息字符串 */
static const char *ext4_decode_error(struct super_block * sb, int errno,
				     char nbuf[16])
{
	char *errstr = NULL;

	switch (errno) {
	/* IO读写错误 */
	case -EIO:
		errstr = "IO failure";
		break;
	/* 内存满了 */
	case -ENOMEM:
		errstr = "Out of memory";
		break;
	/* 只读的文件系统,如果日志系统也崩溃了的话,就返回日志终止的信息 */
	case -EROFS:
		if (!sb || EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT)
			errstr = "Journal has aborted";
		else
			errstr = "Readonly filesystem";
		break;
	default:
		/* 如果用户传入的错误码是未知的我们就直接返回error:错误码的值,但是如果用户传入的缓冲区都是空的,那就直接返回NULL */
		if (nbuf) {
			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
				errstr = nbuf;
		}
		break;
	}

	return errstr;
}

/* __ext4_std_error函数自动的从日志里接受一些希望得到的错误码,然后做出合理的反应.  */
void __ext4_std_error (struct super_block * sb, const char * function,
		       int errno)
{
	char nbuf[16];
	const char *errstr;

	/* 特殊情况,如果错误码是EROFS,并且我忙呢又不在事务里,就没必要记录这个错误 */
	if (errno == -EROFS && journal_current_handle() == NULL &&
	    (sb->s_flags & MS_RDONLY))
		return;
	/* 解码返回错误值 */
	errstr = ext4_decode_error(sb, errno, nbuf);
	printk (KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n",
		sb->s_id, function, errstr);
	/* 处理错误 */
	ext4_handle_error(sb);
}

/*
 * ext4_abort是一个比ext4_error健壮很多的错误处理函数.这个函数可以用来处理一些不可恢复的错误,比如to或者一些严重的日志错误
 * 我们将会强制ext4进入ABORT|READONLY状态,除非文件系统的挂载选项是要求我们立刻panic当遇到错误的时候,这时我们就直接panic
 */
void ext4_abort (struct super_block * sb, const char * function,
		 const char * fmt, ...)
{
	/* 首先打印用户传入的错误信息 */
	va_list args;

	printk (KERN_CRIT "ext4_abort called.\n");

	va_start(args, fmt);
	printk(KERN_CRIT "EXT4-fs error (device %s): %s: ",sb->s_id, function);
	vprintk(fmt, args);
	printk("\n");
	va_end(args);
	/* 如果挂载选项是出现错误就panic,打印panic信息 */
	if (test_opt(sb, ERRORS_PANIC))
		panic("EXT4-fs panic from previous error\n");
	/* 已经是只读,就没必要接下来的操作了 */
	if (sb->s_flags & MS_RDONLY)
		return;
	/* 如果不是只读挂载的,我们需要在超级块上记录错误,然后只读挂载,最后终止日志 */
	printk(KERN_CRIT "Remounting filesystem read-only\n");
	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
	sb->s_flags |= MS_RDONLY;
	EXT4_SB(sb)->s_mount_opt |= EXT4_MOUNT_ABORT;
	jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
}
/* 简单的打印警告信息 */
void ext4_warning (struct super_block * sb, const char * function,
		   const char * fmt, ...)
{
	va_list args;

	va_start(args, fmt);
	printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ",
	       sb->s_id, function);
	vprintk(fmt, args);
	printk("\n");
	va_end(args);
}
/* 动态更新到ext4的新版 */
void ext4_update_dynamic_rev(struct super_block *sb)
{
	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
	/* 如果已经是新版,就不用更新了 */
	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
		return;
	/* 动态更新是一件很危险的事情,因为要修改inode编号以及大小 */
	ext4_warning(sb, __FUNCTION__,
		     "updating to rev %d because of new feature flag, "
		     "running e2fsck is recommended",
		     EXT4_DYNAMIC_REV);
	/* 修改文件系统的第一个inode号码,inode大小,版本号修改 */
	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);

	/*superblock的其他字段应该是0,如果不是,说明他们正在被使用,不管他们就行了。交给e2fsck来清理不一致的状态。 */
}

/*
 * 打开外部的日志块设备,参数是设备号
 */
static struct block_device *ext4_blkdev_get(dev_t dev)
{
	struct block_device *bdev;
	char b[BDEVNAME_SIZE];
	/* 调用其他层给的接口函数来货的block device */
	bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
	if (IS_ERR(bdev))
		goto fail;
	return bdev;

fail:
	printk(KERN_ERR "EXT4: failed to open journal device %s: %ld\n",
			__bdevname(dev, b), PTR_ERR(bdev));
	return NULL;
}

/*
 * 释放日志设备,也是调用其他层给的接口函数来释放
 */
static int ext4_blkdev_put(struct block_device *bdev)
{
	bd_release(bdev);
	return blkdev_put(bdev);
}
/* 移除超级块信息结构体里的块设备 */
static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
{
	struct block_device *bdev;
	int ret = -ENODEV;

	bdev = sbi->journal_bdev;
	if (bdev) {
		/* ext4_blkdev_put来释放,然后赋值为NULL */
		ret = ext4_blkdev_put(bdev);
		sbi->journal_bdev = NULL;
	}
	return ret;
}
/* 由list_head来获得vfs_inode */
static inline struct inode *orphan_list_entry(struct list_head *l)
{
	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
}
/* 打印ext4_sb_info结构体上的s_orphan链表所有项 */
static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
{
	struct list_head *l;

	printk(KERN_ERR "sb orphan head is %d\n",
	       le32_to_cpu(sbi->s_es->s_last_orphan));

	printk(KERN_ERR "sb_info orphan list:\n");
	/* 遍历所有项,对于每一个项打印 */
	list_for_each(l, &sbi->s_orphan) {
		struct inode *inode = orphan_list_entry(l);
		printk(KERN_ERR "  "
		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
		       inode->i_sb->s_id, inode->i_ino, inode,
		       inode->i_mode, inode->i_nlink,
		       NEXT_ORPHAN(inode));
	}
}
/* 卸载文件系统的时候调用的函数 */
static void ext4_put_super (struct super_block * sb)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	int i;
	/* 释放超级块,以及超级块附着的扩展属性结构体,还有ext4的日志结构体 */
	ext4_ext_release(sb);
	ext4_xattr_put_super(sb);
	jbd2_journal_destroy(sbi->s_journal);
	/*如果现在是只读挂载,说明现在在恢复,清理掉恢复中的标记,然后把超级块的buffer head写入磁盘设备*/
	if (!(sb->s_flags & MS_RDONLY)) {
		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
		es->s_state = cpu_to_le16(sbi->s_mount_state);
		BUFFER_TRACE(sbi->s_sbh, "marking dirty");
		mark_buffer_dirty(sbi->s_sbh);
		ext4_commit_super(sb, es, 1);
	}
	/* 对于每一个组,减少对应的块组描述符引用计数 */
	for (i = 0; i < sbi->s_gdb_count; i++)
		brelse(sbi->s_group_desc[i]);
	/* 释放块组描述符占用的内存 */
	kfree(sbi->s_group_desc);
	/* 释放ext4_sb_info里的单cpu变量 */
	percpu_counter_destroy(&sbi->s_freeblocks_counter);
	percpu_counter_destroy(&sbi->s_freeinodes_counter);
	percpu_counter_destroy(&sbi->s_dirs_counter);
	/* 释放ext4_sb_info结构体 */
	brelse(sbi->s_sbh);
#ifdef CONFIG_QUOTA
	/* 如果配置了配额,我们还需要释放所有的配额相关的资源 */
	for (i = 0; i < MAXQUOTAS; i++)
		kfree(sbi->s_qf_names[i]);
#endif

	/* 调试打印信息 */
	if (!list_empty(&sbi->s_orphan))
		dump_orphan_list(sb, sbi);
	J_ASSERT(list_empty(&sbi->s_orphan));

	invalidate_bdev(sb->s_bdev, 0);
	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
		/*
		 * 遇到了非法的日志设备缓冲区
		 */
		sync_blockdev(sbi->journal_bdev);
		invalidate_bdev(sbi->journal_bdev, 0);
		ext4_blkdev_remove(sbi);
	}
	sb->s_fs_info = NULL;
	kfree(sbi);
	return;
}
/* inode缓存分配的地方 */
static kmem_cache_t *ext4_inode_cachep;

/*
 * 分配inode的函数,因为调用了内部的事务程序,所以使用GFP_NOFS标志
 */
static struct inode *ext4_alloc_inode(struct super_block *sb)
{
	struct ext4_inode_info *ei;
	/* 分配一部分缓冲区 */
	ei = kmem_cache_alloc(ext4_inode_cachep, SLAB_NOFS);
	if (!ei)
		return NULL;
	/* 如果配置了权限控制列表,初始化这些字段 */
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	ei->i_acl = EXT4_ACL_NOT_CACHED;
	ei->i_default_acl = EXT4_ACL_NOT_CACHED;
#endif
	/* 初始化一些inode的字段 */
	ei->i_block_alloc_info = NULL;
	ei->vfs_inode.i_version = 1;
	memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
	/* 最后返回分配的inode */
	return &ei->vfs_inode;
}
/* 释放inode回内存的缓冲区 */
static void ext4_destroy_inode(struct inode *inode)
{
	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
}
/* 初始化ext4_inode_info结构体 */
static void init_once(void * foo, kmem_cache_t * cachep, unsigned long flags)
{
	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;

	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
	    SLAB_CTOR_CONSTRUCTOR) {
		INIT_LIST_HEAD(&ei->i_orphan);
#ifdef CONFIG_EXT4DEV_FS_XATTR
		init_rwsem(&ei->xattr_sem);
#endif
		mutex_init(&ei->truncate_mutex);
		inode_init_once(&ei->vfs_inode);
	}
}
/* 初始化inode缓存slab分配器,如果是啊比返回ENOMEM */
static int init_inodecache(void)
{
	ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
					     sizeof(struct ext4_inode_info),
					     0, (SLAB_RECLAIM_ACCOUNT|
						SLAB_MEM_SPREAD),
					     init_once, NULL);
	if (ext4_inode_cachep == NULL)
		return -ENOMEM;
	return 0;
}
/* 销毁inode缓存 */
static void destroy_inodecache(void)
{
	kmem_cache_destroy(ext4_inode_cachep);
}
/* 清理inode结构体以及相关的资源 */
static void ext4_clear_inode(struct inode *inode)
{
	struct ext4_block_alloc_info *rsv = EXT4_I(inode)->i_block_alloc_info;
	/* 如果配置了posix标准的权限控制列表,就是放acl相关的资源 */
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	if (EXT4_I(inode)->i_acl &&
			EXT4_I(inode)->i_acl != EXT4_ACL_NOT_CACHED) {
		posix_acl_release(EXT4_I(inode)->i_acl);
		EXT4_I(inode)->i_acl = EXT4_ACL_NOT_CACHED;
	}
	if (EXT4_I(inode)->i_default_acl &&
			EXT4_I(inode)->i_default_acl != EXT4_ACL_NOT_CACHED) {
		posix_acl_release(EXT4_I(inode)->i_default_acl);
		EXT4_I(inode)->i_default_acl = EXT4_ACL_NOT_CACHED;
	}
#endif
	/* 把inode保留的块都释放了,一些字段赋值为NULL或释放掉 */
	ext4_discard_reservation(inode);
	EXT4_I(inode)->i_block_alloc_info = NULL;
	if (unlikely(rsv))
		kfree(rsv);
}
/* 打印配额选项 */
static inline void ext4_show_quota_options(struct seq_file *seq, struct super_block *sb)
{
#if defined(CONFIG_QUOTA)
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	if (sbi->s_jquota_fmt)
		seq_printf(seq, ",jqfmt=%s",
		(sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold": "vfsv0");

	if (sbi->s_qf_names[USRQUOTA])
		seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);

	if (sbi->s_qf_names[GRPQUOTA])
		seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);

	if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA)
		seq_puts(seq, ",usrquota");

	if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)
		seq_puts(seq, ",grpquota");
#endif
}
/* 打印挂载时候的数据模式 */
static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct super_block *sb = vfs->mnt_sb;

	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
		seq_puts(seq, ",data=journal");
	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
		seq_puts(seq, ",data=ordered");
	else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
		seq_puts(seq, ",data=writeback");

	ext4_show_quota_options(seq, sb);

	return 0;
}

/* 从ext4获取一个dentry结构体,vobjp[0]是inode编号,vobjp[1]是版本号 */
static struct dentry *ext4_get_dentry(struct super_block *sb, void *vobjp)
{
	__u32 *objp = vobjp;
	unsigned long ino = objp[0];
	__u32 generation = objp[1];
	struct inode *inode;
	struct dentry *result;
	/* 首先检查inode编号的合法性 */
	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
		return ERR_PTR(-ESTALE);
	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
		return ERR_PTR(-ESTALE);

	/* 根据inode编号返回对应的inode结构体 */
	inode = iget(sb, ino);
	if (inode == NULL)
		return ERR_PTR(-ENOMEM);
	/* 说明inode已经被删除了,我们返回对应的错误码 */
	if (is_bad_inode(inode) ||
	    (generation && inode->i_generation != generation)) {
		iput(inode);
		return ERR_PTR(-ESTALE);
	}
	/* 根据inode获得dentry */
	result = d_alloc_anon(inode);
	if (!result) {
		iput(inode);
		return ERR_PTR(-ENOMEM);
	}
	return result;
}

#ifdef CONFIG_QUOTA
#define QTYPE2NAME(t) ((t)==USRQUOTA?"user":"group")
#define QTYPE2MOPT(on, t) ((t)==USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
/* 如果定义了CONFIG_QUOTA宏,就定义和配额相关的操作 */
static int ext4_dquot_initialize(struct inode *inode, int type);
static int ext4_dquot_drop(struct inode *inode);
static int ext4_write_dquot(struct dquot *dquot);
static int ext4_acquire_dquot(struct dquot *dquot);
static int ext4_release_dquot(struct dquot *dquot);
static int ext4_mark_dquot_dirty(struct dquot *dquot);
static int ext4_write_info(struct super_block *sb, int type);
static int ext4_quota_on(struct super_block *sb, int type, int format_id, char *path);
static int ext4_quota_on_mount(struct super_block *sb, int type);
static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
			       size_t len, loff_t off);
static ssize_t ext4_quota_write(struct super_block *sb, int type,
				const char *data, size_t len, loff_t off);
/* 配额操作结构体 */
static struct dquot_operations ext4_quota_operations = {
	.initialize	= ext4_dquot_initialize,
	.drop		= ext4_dquot_drop,
	.alloc_space	= dquot_alloc_space,
	.alloc_inode	= dquot_alloc_inode,
	.free_space	= dquot_free_space,
	.free_inode	= dquot_free_inode,
	.transfer	= dquot_transfer,
	.write_dquot	= ext4_write_dquot,
	.acquire_dquot	= ext4_acquire_dquot,
	.release_dquot	= ext4_release_dquot,
	.mark_dirty	= ext4_mark_dquot_dirty,
	.write_info	= ext4_write_info
};
/* 响应用户传来的配额相关的请求的函数结构体 */
static struct quotactl_ops ext4_qctl_operations = {
	.quota_on	= ext4_quota_on,
	.quota_off	= vfs_quota_off,
	.quota_sync	= vfs_quota_sync,
	.get_info	= vfs_get_dqinfo,
	.set_info	= vfs_set_dqinfo,
	.get_dqblk	= vfs_get_dqblk,
	.set_dqblk	= vfs_set_dqblk
};
#endif
/* ext4文件系统的超级块的操作函数结构体 */
static struct super_operations ext4_sops = {
	.alloc_inode	= ext4_alloc_inode,
	.destroy_inode	= ext4_destroy_inode,
	.read_inode	= ext4_read_inode,
	.write_inode	= ext4_write_inode,
	.dirty_inode	= ext4_dirty_inode,
	.delete_inode	= ext4_delete_inode,
	.put_super	= ext4_put_super,
	.write_super	= ext4_write_super,
	.sync_fs	= ext4_sync_fs,
	.write_super_lockfs = ext4_write_super_lockfs,
	.unlockfs	= ext4_unlockfs,
	.statfs		= ext4_statfs,
	.remount_fs	= ext4_remount,
	.clear_inode	= ext4_clear_inode,
	.show_options	= ext4_show_options,
#ifdef CONFIG_QUOTA
	.quota_read	= ext4_quota_read,
	.quota_write	= ext4_quota_write,
#endif
};
/* 提供给vfs层调用的函数 */
static struct export_operations ext4_export_ops = {
	.get_parent = ext4_get_parent,
	.get_dentry = ext4_get_dentry,
};
/* 文件系统挂载的所有选项,以枚举变量的形式展现 */
enum {
	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
	Opt_nouid32, Opt_nocheck, Opt_debug, Opt_oldalloc, Opt_orlov,
	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
	Opt_reservation, Opt_noreservation, Opt_noload, Opt_nobh, Opt_bh,
	Opt_commit, Opt_journal_update, Opt_journal_inum, Opt_journal_dev,
	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota,
	Opt_ignore, Opt_barrier, Opt_err, Opt_resize, Opt_usrquota,
	Opt_grpquota, Opt_extents,
};
/* 挂载选项和字符串的对应关系 */
static match_table_t tokens = {
	{Opt_bsd_df, "bsddf"},
	{Opt_minix_df, "minixdf"},
	{Opt_grpid, "grpid"},
	{Opt_grpid, "bsdgroups"},
	{Opt_nogrpid, "nogrpid"},
	{Opt_nogrpid, "sysvgroups"},
	{Opt_resgid, "resgid=%u"},
	{Opt_resuid, "resuid=%u"},
	{Opt_sb, "sb=%u"},
	{Opt_err_cont, "errors=continue"},
	{Opt_err_panic, "errors=panic"},
	{Opt_err_ro, "errors=remount-ro"},
	{Opt_nouid32, "nouid32"},
	{Opt_nocheck, "nocheck"},
	{Opt_nocheck, "check=none"},
	{Opt_debug, "debug"},
	{Opt_oldalloc, "oldalloc"},
	{Opt_orlov, "orlov"},
	{Opt_user_xattr, "user_xattr"},
	{Opt_nouser_xattr, "nouser_xattr"},
	{Opt_acl, "acl"},
	{Opt_noacl, "noacl"},
	{Opt_reservation, "reservation"},
	{Opt_noreservation, "noreservation"},
	{Opt_noload, "noload"},
	{Opt_nobh, "nobh"},
	{Opt_bh, "bh"},
	{Opt_commit, "commit=%u"},
	{Opt_journal_update, "journal=update"},
	{Opt_journal_inum, "journal=%u"},
	{Opt_journal_dev, "journal_dev=%u"},
	{Opt_abort, "abort"},
	{Opt_data_journal, "data=journal"},
	{Opt_data_ordered, "data=ordered"},
	{Opt_data_writeback, "data=writeback"},
	{Opt_offusrjquota, "usrjquota="},
	{Opt_usrjquota, "usrjquota=%s"},
	{Opt_offgrpjquota, "grpjquota="},
	{Opt_grpjquota, "grpjquota=%s"},
	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
	{Opt_grpquota, "grpquota"},
	{Opt_noquota, "noquota"},
	{Opt_quota, "quota"},
	{Opt_usrquota, "usrquota"},
	{Opt_barrier, "barrier=%u"},
	{Opt_extents, "extents"},
	{Opt_err, NULL},
	{Opt_resize, "resize"},
};
/* data参数是挂载选项的字符串,这个函数的作用是返回超级块所在的物理块号,如果用户指定了
   超级块的位置比如sb=xxx,就返回超级块的位置,如果没有指定,就返回1,说明在默认的位置 */
static ext4_fsblk_t get_sb_block(void **data)
{
	ext4_fsblk_t	sb_block;
	/* 用char指向传入的挂载选项字符串 */
	char		*options = (char *) *data;

	/* 如果参数是NULL或者挂载选项没有指定超级块所在的位置,就说明超级块在默认的位置 */
	if (!options || strncmp(options, "sb=", 3) != 0)
		return 1;	
	/* 运行到这里就说明用户指定了超级块的位置 */
	options += 3;
	/*把字符串转换成超级块数位置 */
	sb_block = simple_strtoul(options, &options, 0);
	if (*options && *options != ',') {
		printk("EXT4-fs: Invalid sb specification: %s\n",
		       (char *) *data);
		return 1;
	}
	if (*options == ',')
		options++;
	*data = (void *) options;
	return sb_block;
}
/* 把用户传入的字符串形式的挂载参数转化成s_mount_opt上的对应位图的表现形式 */
static int parse_options (char *options, struct super_block *sb,
			  unsigned int *inum, unsigned long *journal_devnum,
			  ext4_fsblk_t *n_blocks_count, int is_remount)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	char * p;
	substring_t args[MAX_OPT_ARGS];
	int data_opt = 0;
	int option;
#ifdef CONFIG_QUOTA
	int qtype;
	char *qname;
#endif
	/* 检查字符串参数 */
	if (!options)
		return 1;
	/* 逐个解析挂载选项,并在s_mount_opt上对相应位置位 */
	while ((p = strsep (&options, ",")) != NULL) {
		int token;
		if (!*p)
			continue;
		/* 把字符串选项转换成枚举体里的变量 */
		token = match_token(p, tokens, args);
		switch (token) {
		/* 对于bsddf和minixdf都认为是minix文件系统 */
		case Opt_bsd_df:
			clear_opt (sbi->s_mount_opt, MINIX_DF);
			break;
		case Opt_minix_df:
			set_opt (sbi->s_mount_opt, MINIX_DF);
			break;
		/* 设置组有没有默认的组ID,如果有就置位,没有就清除对应位 */
		case Opt_grpid:
			set_opt (sbi->s_mount_opt, GRPID);
			break;
		/* 新创建的文件的组ID是创建者 */
		case Opt_nogrpid:
			clear_opt (sbi->s_mount_opt, GRPID);
			break;
		/* 设置可能是用保留块的用户ID */
		case Opt_resuid:
			if (match_int(&args[0], &option))
				return 0;
			sbi->s_resuid = option;
			break;
		/* 设置可能使用保留块的组ID */
		case Opt_resgid:
			if (match_int(&args[0], &option))
				return 0;
			sbi->s_resgid = option;
			break;
		case Opt_sb:
			/* 已经移动到了get_sb_block()函数中处理这里不再处理 */
			break;
		/* 这三个宏表示出现错误的时候是继续还是重新挂载成为只读,亦或是报PANIC,在相应位上置位或者清除位 */
		case Opt_err_panic:
			clear_opt (sbi->s_mount_opt, ERRORS_CONT);
			clear_opt (sbi->s_mount_opt, ERRORS_RO);
			set_opt (sbi->s_mount_opt, ERRORS_PANIC);
			break;
		case Opt_err_ro:
			clear_opt (sbi->s_mount_opt, ERRORS_CONT);
			clear_opt (sbi->s_mount_opt, ERRORS_PANIC);
			set_opt (sbi->s_mount_opt, ERRORS_RO);
			break;
		case Opt_err_cont:
			clear_opt (sbi->s_mount_opt, ERRORS_RO);
			clear_opt (sbi->s_mount_opt, ERRORS_PANIC);
			set_opt (sbi->s_mount_opt, ERRORS_CONT);
			break;
		/* 设置没有默认文件uid,于是创建者就是文件的uid */
		case Opt_nouid32:
			set_opt (sbi->s_mount_opt, NO_UID32);
			break;
		/* 挂载的时候不会进行位图的检查 */
		case Opt_nocheck:
			clear_opt (sbi->s_mount_opt, CHECK);
			break;
		/* 调试信息会不会在syslog中打印出来 */
		case Opt_debug:
			set_opt (sbi->s_mount_opt, DEBUG);
			break;
		/* 不使用Orlov块分配器 */
		case Opt_oldalloc:
			set_opt (sbi->s_mount_opt, OLDALLOC);
			break;
		/* 使用Orlov块分配器 */
		case Opt_orlov:
			clear_opt (sbi->s_mount_opt, OLDALLOC);
			break;
#ifdef CONFIG_EXT4DEV_FS_XATTR
		/* 配置文件扩展属性 */
		case Opt_user_xattr:
			set_opt (sbi->s_mount_opt, XATTR_USER);
			break;
		/* 不配置文件扩展属性 */
		case Opt_nouser_xattr:
			clear_opt (sbi->s_mount_opt, XATTR_USER);
			break;
#else
		case Opt_user_xattr:
		case Opt_nouser_xattr:
			printk("EXT4 (no)user_xattr options not supported\n");
			break;
#endif
		/* 文件控制权限列表的配置与否 */
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
		case Opt_acl:
			set_opt(sbi->s_mount_opt, POSIX_ACL);
			break;
		case Opt_noacl:
			clear_opt(sbi->s_mount_opt, POSIX_ACL);
			break;
#else
		case Opt_acl:
		case Opt_noacl:
			printk("EXT4 (no)acl options not supported\n");
			break;
#endif
		case Opt_reservation:
			set_opt(sbi->s_mount_opt, RESERVATION);
			break;
		case Opt_noreservation:
			clear_opt(sbi->s_mount_opt, RESERVATION);
			break;
		case Opt_journal_update:
			/* 将ext4的日志格式变成当前的格式 */
			if (is_remount) {
				printk(KERN_ERR "EXT4-fs: cannot specify "
				       "journal on remount\n");
				return 0;
			}
			set_opt (sbi->s_mount_opt, UPDATE_JOURNAL);
			break;
		/* 如果是重新挂载不会理会这些journal选项,inum指定有多少个日志文件 */
		case Opt_journal_inum:
			if (is_remount) {
				printk(KERN_ERR "EXT4-fs: cannot specify "
				       "journal on remount\n");
				return 0;
			}
			if (match_int(&args[0], &option))
				return 0;
			*inum = option;
			break;
		/* 指定日志设备的主次设备号 */
		case Opt_journal_dev:
			if (is_remount) {
				printk(KERN_ERR "EXT4-fs: cannot specify "
				       "journal on remount\n");
				return 0;
			}
			if (match_int(&args[0], &option))
				return 0;
			*journal_devnum = option;
			break;
		/* 挂载的时候不会加载日志 */
		case Opt_noload:
			set_opt (sbi->s_mount_opt, NOLOAD);
			break;
		/* 每过多少秒会把脏数据写入到磁盘上 */
		case Opt_commit:
			if (match_int(&args[0], &option))
				return 0;
			if (option < 0)
				return 0;
			if (option == 0)
				option = JBD_DEFAULT_MAX_COMMIT_AGE;
			sbi->s_commit_interval = HZ * option;
			break;
		/* 三种数据模式的置为和清除位 */
		case Opt_data_journal:
			data_opt = EXT4_MOUNT_JOURNAL_DATA;
			goto datacheck;
		case Opt_data_ordered:
			data_opt = EXT4_MOUNT_ORDERED_DATA;
			goto datacheck;
		case Opt_data_writeback:
			data_opt = EXT4_MOUNT_WRITEBACK_DATA;
		datacheck:
			/* 对数据位的检查 */
			if (is_remount) {
				if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS)
						!= data_opt) {
					printk(KERN_ERR
						"EXT4-fs: cannot change data "
						"mode on remount\n");
					return 0;
				}
			} else {
				sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS;
				sbi->s_mount_opt |= data_opt;
			}
			break;
#ifdef CONFIG_QUOTA
		/* 用户配额和组配额的应对函数 */
		case Opt_usrjquota:
			qtype = USRQUOTA;
			goto set_qf_name;
		case Opt_grpjquota:
			qtype = GRPQUOTA;
set_qf_name:
			/* 判断是不是启用了配额限制,如果已经启用了,返回错误,现在应当尚未启动 */
			if (sb_any_quota_enabled(sb)) {
				printk(KERN_ERR
					"EXT4-fs: Cannot change journalled "
					"quota options when quota turned on.\n");
				return 0;
			}
			/* 配额限制的文件名字 */
			qname = match_strdup(&args[0]);
			if (!qname) {
				printk(KERN_ERR
					"EXT4-fs: not enough memory for "
					"storing quotafile name.\n");
				return 0;
			}
			
			if (sbi->s_qf_names[qtype] &&
			    strcmp(sbi->s_qf_names[qtype], qname)) {
				printk(KERN_ERR
					"EXT4-fs: %s quota file already "
					"specified.\n", QTYPE2NAME(qtype));
				kfree(qname);
				return 0;
			}
			sbi->s_qf_names[qtype] = qname;
			/* 检查配额文件名是不是在根目录下 */
			if (strchr(sbi->s_qf_names[qtype], '/')) {
				printk(KERN_ERR
					"EXT4-fs: quotafile must be on "
					"filesystem root.\n");
				kfree(sbi->s_qf_names[qtype]);
				sbi->s_qf_names[qtype] = NULL;
				return 0;
			}
			/* 设置配额对应位已经启动 */
			set_opt(sbi->s_mount_opt, QUOTA);
			break;
		/* 去除配额限制 */
		case Opt_offusrjquota:
			qtype = USRQUOTA;
			goto clear_qf_name;
		case Opt_offgrpjquota:
			qtype = GRPQUOTA;
clear_qf_name:
			if (sb_any_quota_enabled(sb)) {
				printk(KERN_ERR "EXT4-fs: Cannot change "
					"journalled quota options when "
					"quota turned on.\n");
				return 0;
			}
			sbi->s_qf_names[qtype] = NULL;
			break;
		case Opt_jqfmt_vfsold:
			sbi->s_jquota_fmt = QFMT_VFS_OLD;
			break;
		case Opt_jqfmt_vfsv0:
			sbi->s_jquota_fmt = QFMT_VFS_V0;
			break;
		/* 用户和组的配额限制对应的位操作,已经无配额限制的位操作 */
		case Opt_quota:
		case Opt_usrquota:
			set_opt(sbi->s_mount_opt, QUOTA);
			set_opt(sbi->s_mount_opt, USRQUOTA);
			break;
		case Opt_grpquota:
			set_opt(sbi->s_mount_opt, QUOTA);
			set_opt(sbi->s_mount_opt, GRPQUOTA);
			break;
		case Opt_noquota:
			if (sb_any_quota_enabled(sb)) {
				printk(KERN_ERR "EXT4-fs: Cannot change quota "
					"options when quota turned on.\n");
				return 0;
			}
			clear_opt(sbi->s_mount_opt, QUOTA);
			clear_opt(sbi->s_mount_opt, USRQUOTA);
			clear_opt(sbi->s_mount_opt, GRPQUOTA);
			break;
#else
		case Opt_quota:
		case Opt_usrquota:
		case Opt_grpquota:
		case Opt_usrjquota:
		case Opt_grpjquota:
		case Opt_offusrjquota:
		case Opt_offgrpjquota:
		case Opt_jqfmt_vfsold:
		case Opt_jqfmt_vfsv0:
			printk(KERN_ERR
				"EXT4-fs: journalled quota options not "
				"supported.\n");
			break;
		case Opt_noquota:
			break;
#endif
		case Opt_abort:
			set_opt(sbi->s_mount_opt, ABORT);
			break;
		case Opt_barrier:
			if (match_int(&args[0], &option))
				return 0;
			if (option)
				set_opt(sbi->s_mount_opt, BARRIER);
			else
				clear_opt(sbi->s_mount_opt, BARRIER);
			break;
		case Opt_ignore:
			break;
		/* 改变inode大小 */
		case Opt_resize:
			if (!is_remount) {
				printk("EXT4-fs: resize option only available "
					"for remount\n");
				return 0;
			}
			if (match_int(&args[0], &option) != 0)
				return 0;
			*n_blocks_count = option;
			break;
		/* 缓冲区首部是不是启用,一般都会启用 */
		case Opt_nobh:
			set_opt(sbi->s_mount_opt, NOBH);
			break;
		case Opt_bh:
			clear_opt(sbi->s_mount_opt, NOBH);
			break;
		/* extents文件格式 */
		case Opt_extents:
			set_opt (sbi->s_mount_opt, EXTENTS);
			break;
		default:
			printk (KERN_ERR
				"EXT4-fs: Unrecognized mount option \"%s\" "
				"or missing value\n", p);
			return 0;
		}
	}
#ifdef CONFIG_QUOTA
	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
		if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) &&
		     sbi->s_qf_names[USRQUOTA])
			clear_opt(sbi->s_mount_opt, USRQUOTA);

		if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) &&
		     sbi->s_qf_names[GRPQUOTA])
			clear_opt(sbi->s_mount_opt, GRPQUOTA);
		/* 检验配额格式是不是正确 */
		if ((sbi->s_qf_names[USRQUOTA] &&
				(sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) ||
		    (sbi->s_qf_names[GRPQUOTA] &&
				(sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) {
			printk(KERN_ERR "EXT4-fs: old and new quota "
					"format mixing.\n");
			return 0;
		}

		if (!sbi->s_jquota_fmt) {
			printk(KERN_ERR "EXT4-fs: journalled quota format "
					"not specified.\n");
			return 0;
		}
	} else {
		/* 如果日志配额限制没有指定会打印警告 */
		if (sbi->s_jquota_fmt) {
			printk(KERN_ERR "EXT4-fs: journalled quota format "
					"specified with no journalling "
					"enabled.\n");
			return 0;
		}
	}
#endif
	return 1;
}
/* 填充ext4_super_block结构体里的一些变量 */
static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
			    int read_only)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	int res = 0;
	/* 首先检查,如果有问题会打印错误 */
	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
		/* 当前es版本大于最高版本,打印错误,重新以只读格式挂载 */
		printk (KERN_ERR "EXT4-fs warning: revision level too high, "
			"forcing read-only mode\n");
		res = MS_RDONLY;
	}
	/* 已经只读挂载直接返回 */
	if (read_only)
		return res;
	/* 不是合法的文件系统,提示需要运行e2fsck检查修复 */
	if (!(sbi->s_mount_state & EXT4_VALID_FS))
		printk (KERN_WARNING "EXT4-fs warning: mounting unchecked fs, "
			"running e2fsck is recommended\n");
	else if ((sbi->s_mount_state & EXT4_ERROR_FS))
		printk (KERN_WARNING
			"EXT4-fs warning: mounting fs with errors, "
			"running e2fsck is recommended\n");
	/* 挂载次数超出最大限制 */
	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
		 le16_to_cpu(es->s_mnt_count) >=
		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
		printk (KERN_WARNING
			"EXT4-fs warning: maximal mount count reached, "
			"running e2fsck is recommended\n");
	else if (le32_to_cpu(es->s_checkinterval) &&
		(le32_to_cpu(es->s_lastcheck) +
			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
		printk (KERN_WARNING
			"EXT4-fs warning: checktime reached, "
			"running e2fsck is recommended\n");
	/* 如果es结构体的s_max_mnt_count没有设置,我们就设置为默认的最大值 */
	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
	/* 挂载数目加一,时间记录,更新版本 */
	es->s_mnt_count=cpu_to_le16(le16_to_cpu(es->s_mnt_count) + 1);
	es->s_mtime = cpu_to_le32(get_seconds());
	ext4_update_dynamic_rev(sb);
	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
	/* 把对es结构体的修改写入磁盘 */
	ext4_commit_super(sb, es, 1);
	/* 如果挂载选项里有debug还需要打印调试信息 */
	if (test_opt(sb, DEBUG))
		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%lu, "
				"bpg=%lu, ipg=%lu, mo=%04lx]\n",
			sb->s_blocksize,
			sbi->s_groups_count,
			EXT4_BLOCKS_PER_GROUP(sb),
			EXT4_INODES_PER_GROUP(sb),
			sbi->s_mount_opt);

	printk(KERN_INFO "EXT4 FS on %s, ", sb->s_id);
	if (EXT4_SB(sb)->s_journal->j_inode == NULL) {
		char b[BDEVNAME_SIZE];

		printk("external journal on %s\n",
			bdevname(EXT4_SB(sb)->s_journal->j_dev, b));
	} else {
		printk("internal journal\n");
	}
	return res;
}

/* 挂载时候调用,调用之前super_block会被locked,用来检查组描述符 */
static int ext4_check_descriptors (struct super_block * sb)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
	ext4_fsblk_t last_block;
	ext4_fsblk_t block_bitmap;
	ext4_fsblk_t inode_bitmap;
	ext4_fsblk_t inode_table;
	struct ext4_group_desc * gdp = NULL;
	int desc_block = 0;
	int i;

	ext4_debug ("Checking group descriptors");
	/* 对每一个组进行检查 */
	for (i = 0; i < sbi->s_groups_count; i++)
	{
		/* 最后一组要进行块对齐,其实一般情况所有组的大小都是一样的 */
		if (i == sbi->s_groups_count - 1)
			last_block = ext4_blocks_count(sbi->s_es) - 1;
		else
			last_block = first_block +
				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
		/* 如果组描述符是所在位置是一个块的开始 */
		if ((i % EXT4_DESC_PER_BLOCK(sb)) == 0)
			gdp = (struct ext4_group_desc *)
					sbi->s_group_desc[desc_block++]->b_data;
		/* 逐个进行数据块位图,inode位图,inode table的检查 */
		block_bitmap = ext4_block_bitmap(sb, gdp);
		if (block_bitmap < first_block || block_bitmap > last_block)
		{
			ext4_error (sb, "ext4_check_descriptors",
				    "Block bitmap for group %d"
				    " not in group (block %llu)!",
				    i, block_bitmap);
			return 0;
		}
		inode_bitmap = ext4_inode_bitmap(sb, gdp);
		if (inode_bitmap < first_block || inode_bitmap > last_block)
		{
			ext4_error (sb, "ext4_check_descriptors",
				    "Inode bitmap for group %d"
				    " not in group (block %llu)!",
				    i, inode_bitmap);
			return 0;
		}
		inode_table = ext4_inode_table(sb, gdp);
		if (inode_table < first_block ||
		    inode_table + sbi->s_itb_per_group > last_block)
		{
			ext4_error (sb, "ext4_check_descriptors",
				    "Inode table for group %d"
				    " not in group (block %llu)!",
				    i, inode_table);
			return 0;
		}
		first_block += EXT4_BLOCKS_PER_GROUP(sb);
		gdp = (struct ext4_group_desc *)
			((__u8 *)gdp + EXT4_DESC_SIZE(sb));
	}
	/* 更新free blocks和free inode的值 */
	ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
	sbi->s_es->s_free_inodes_count=cpu_to_le32(ext4_count_free_inodes(sb));
	return 1;
}


/* ext4_orphan_cleanup()遍历在超级块上的inode链表,寻找被删除的inode.努力在recovery的时候删除这些inode.
 * 我们仅仅是对每一个inode执行iget()和iput(),如果我们碰巧指向了一个正在使用的inode或者是已经被删除的inode都是很安全的,最坏的情况也不过是得到一条"bit already cleared”的消息来自ext4_free_inode()函数.
 *唯一的我们可能指向一个错误的inode原因是e2fsck正在文件系统上运行,它一定已经执行过孤儿inode的清理工作了,所以我们就直接终止就可以了。
 */
static void ext4_orphan_cleanup (struct super_block * sb,
				 struct ext4_super_block * es)
{
	unsigned int s_flags = sb->s_flags;
	int nr_orphans = 0, nr_truncates = 0;
#ifdef CONFIG_QUOTA
	int i;
#endif
	/* 没有孤儿inode需要清理 */
	if (!es->s_last_orphan) {
		jbd_debug(4, "no orphan inodes to clean up\n");
		return;
	}
	/* 有错误,停止清理inode */
	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
		if (es->s_last_orphan)
			jbd_debug(1, "Errors on filesystem, "
				  "clearing orphan list.\n");
		es->s_last_orphan = 0;
		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
		return;
	}
	/* 只读文件系统,首先变成可读写的,清理完成以后再变只读的 */
	if (s_flags & MS_RDONLY) {
		printk(KERN_INFO "EXT4-fs: %s: orphan cleanup on readonly fs\n",
		       sb->s_id);
		sb->s_flags &= ~MS_RDONLY;
	}
#ifdef CONFIG_QUOTA
	/* 打开配额限制 */
	sb->s_flags |= MS_ACTIVE;
	for (i = 0; i < MAXQUOTAS; i++) {
		if (EXT4_SB(sb)->s_qf_names[i]) {
			int ret = ext4_quota_on_mount(sb, i);
			if (ret < 0)
				printk(KERN_ERR
					"EXT4-fs: Cannot turn on journalled "
					"quota: error %d\n", ret);
		}
	}
#endif
	/* 遍历每一个inode进行清理工作 */
	while (es->s_last_orphan) {
		struct inode *inode;
		/* 首先获取inode */
		if (!(inode =
		      ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan)))) {
			es->s_last_orphan = 0;
			break;
		}
		
		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
		DQUOT_INIT(inode);
		/* 记录删除的和截断的数目 */
		if (inode->i_nlink) {
			printk(KERN_DEBUG
				"%s: truncating inode %lu to %Ld bytes\n",
				__FUNCTION__, inode->i_ino, inode->i_size);
			jbd_debug(2, "truncating inode %lu to %Ld bytes\n",
				  inode->i_ino, inode->i_size);
			ext4_truncate(inode);
			nr_truncates++;
		} else {
			printk(KERN_DEBUG
				"%s: deleting unreferenced inode %lu\n",
				__FUNCTION__, inode->i_ino);
			jbd_debug(2, "deleting unreferenced inode %lu\n",
				  inode->i_ino);
			nr_orphans++;
		}
		/* 删除inode如果引用计数为0 */
		iput(inode);  
	}

#define PLURAL(x) (x), ((x)==1) ? "" : "s"
	/* 打印调试信息 */
	if (nr_orphans)
		printk(KERN_INFO "EXT4-fs: %s: %d orphan inode%s deleted\n",
		       sb->s_id, PLURAL(nr_orphans));
	if (nr_truncates)
		printk(KERN_INFO "EXT4-fs: %s: %d truncate%s cleaned up\n",
		       sb->s_id, PLURAL(nr_truncates));
#ifdef CONFIG_QUOTA
	/* 关闭配额限制 */
	for (i = 0; i < MAXQUOTAS; i++) {
		if (sb_dqopt(sb)->files[i])
			vfs_quota_off(sb, i);
	}
#endif
	/* 重新加载只读状态 */
	sb->s_flags = s_flags; 
}

#define log2(n) ffz(~(n))

/*
 * 最大文件大小.  这是一个直接索引块,简洁索引块,双重间接索引块的限制.
 */
static loff_t ext4_max_size(int bits)
{
	loff_t res = EXT4_NDIR_BLOCKS;
	const loff_t upper_limit = 0x1ff7fffd000LL;

	res += 1LL << (bits-2);
	res += 1LL << (2*(bits-2));
	res += 1LL << (3*(bits-2));
	res <<= bits;
	if (res > upper_limit)
		res = upper_limit;
	return res;
}
/* 返回这个块组描述符所在的块的位置 */
static ext4_fsblk_t descriptor_loc(struct super_block *sb,
				ext4_fsblk_t logical_sb_block, int nr)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	unsigned long bg, first_meta_bg;
	int has_super = 0;
	/* 第一个元数据块组 */
	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
	/* 如果ext4没有元数据块组,就直接返回超级块所在的位置的后边nr个 */
	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
	    nr < first_meta_bg)
		return logical_sb_block + nr + 1;
	/* 第bg哥块组描述符 */
	bg = sbi->s_desc_per_block * nr;
	/* 有超级块的话需要跳过第一个超级块 */
	if (ext4_bg_has_super(sb, bg))
		has_super = 1;
	return (has_super + ext4_group_first_block_no(sb, bg));
}

/* 本文件最重要的函数,填充super_block结构体以及ext4_sb_info结构体的各个字段,挂载过程中最重要的函数 */
static int ext4_fill_super (struct super_block *sb, void *data, int silent)
{
	struct buffer_head * bh;
	struct ext4_super_block *es = NULL;
	struct ext4_sb_info *sbi;
	ext4_fsblk_t block;
	ext4_fsblk_t sb_block = get_sb_block(&data);
	ext4_fsblk_t logical_sb_block;
	unsigned long offset = 0;
	unsigned int journal_inum = 0;
	unsigned long journal_devnum = 0;
	unsigned long def_mount_opts;
	struct inode *root;
	int blocksize;
	int hblock;
	int db_count;
	int i;
	int needs_recovery;
	__le32 features;
	__u64 blocks_count;
	/* 为ext4_sb_info分配空间,包括一些简单的缺省值的初始赋值 */
	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
	if (!sbi)
		return -ENOMEM;
	sb->s_fs_info = sbi;
	sbi->s_mount_opt = 0;
	sbi->s_resuid = EXT4_DEF_RESUID;
	sbi->s_resgid = EXT4_DEF_RESGID;

	unlock_kernel();
	/* 最小的块大小 */
	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
	if (!blocksize) {
		printk(KERN_ERR "EXT4-fs: unable to set blocksize\n");
		goto out_fail;
	}

	/*
	 * ext4只有在1KB大小的块情况下才会buffer对齐,如果不是1KB大小的块我们需要计算在块内的偏移值	 */
	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
		offset = do_div(logical_sb_block, blocksize);
	} else {
		logical_sb_block = sb_block;
	}
	/* 读取超级块所在的块 */
	if (!(bh = sb_bread(sb, logical_sb_block))) {
		printk (KERN_ERR "EXT4-fs: unable to read superblock\n");
		goto out_fail;
	}
	/*
	 * s_es必须被尽快的初始化,因为很多的ext4的宏会依赖这个结构体的值
	 */
	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
	sbi->s_es = es;
	/* 超级块的魔数,检查是否合法 */
	sb->s_magic = le16_to_cpu(es->s_magic);
	if (sb->s_magic != EXT4_SUPER_MAGIC)
		goto cantfind_ext4;

	/* 在转换挂载选项之前,先设置初始的值 */
	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
	if (def_mount_opts & EXT4_DEFM_DEBUG)
		set_opt(sbi->s_mount_opt, DEBUG);
	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
		set_opt(sbi->s_mount_opt, GRPID);
	if (def_mount_opts & EXT4_DEFM_UID16)
		set_opt(sbi->s_mount_opt, NO_UID32);
#ifdef CONFIG_EXT4DEV_FS_XATTR
	if (def_mount_opts & EXT4_DEFM_XATTR_USER)
		set_opt(sbi->s_mount_opt, XATTR_USER);
#endif
#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
	if (def_mount_opts & EXT4_DEFM_ACL)
		set_opt(sbi->s_mount_opt, POSIX_ACL);
#endif
	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
		sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
		sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
		sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA;

	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
		set_opt(sbi->s_mount_opt, ERRORS_PANIC);
	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_RO)
		set_opt(sbi->s_mount_opt, ERRORS_RO);
	else
		set_opt(sbi->s_mount_opt, ERRORS_CONT);

	sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
	sbi->s_resgid = le16_to_cpu(es->s_def_resgid);

	set_opt(sbi->s_mount_opt, RESERVATION);
	/* 缺省挂载选项设置完毕以后,根据用户传入的挂载选项来设置 */
	if (!parse_options ((char *) data, sb, &journal_inum, &journal_devnum,
			    NULL, 0))
		goto failed_mount;
	/* 超级块结构体的flags和权限控制列表 */
	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
		((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);

	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
	    (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
	     EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
	     EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
		printk(KERN_WARNING
		       "EXT4-fs warning: feature flags set on rev 0 fs, "
		       "running e2fsck is recommended\n");
	/*
	 * 检查feature flags有没有不支持的flag.
	 */
	features = EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP);
	if (features) {
		printk(KERN_ERR "EXT4-fs: %s: couldn't mount because of "
		       "unsupported optional features (%x).\n",
		       sb->s_id, le32_to_cpu(features));
		goto failed_mount;
	}
	features = EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP);
	if (!(sb->s_flags & MS_RDONLY) && features) {
		printk(KERN_ERR "EXT4-fs: %s: couldn't mount RDWR because of "
		       "unsupported optional features (%x).\n",
		       sb->s_id, le32_to_cpu(features));
		goto failed_mount;
	}
	/* blocksize设置成为用户传入的blocksize */
	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
	/* 检查blocksize是不是合法 */
	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
	    blocksize > EXT4_MAX_BLOCK_SIZE) {
		printk(KERN_ERR
		       "EXT4-fs: Unsupported filesystem blocksize %d on %s.\n",
		       blocksize, sb->s_id);
		goto failed_mount;
	}
	/* 得到块设备上的块大小 */
	hblock = bdev_hardsect_size(sb->s_bdev);
	/* 块设备的块大小和文件系统的块大小不一致 */
	if (sb->s_blocksize != blocksize) {
		/*
		 * 确保文件系统块大小大于硬件设备上的块大小.
		 */
		if (blocksize < hblock) {
			printk(KERN_ERR "EXT4-fs: blocksize %d too small for "
			       "device blocksize %d.\n", blocksize, hblock);
			goto failed_mount;
		}

		brelse (bh);
		/* 根据新的块大小,得到新的超级块和es结构体 */
		sb_set_blocksize(sb, blocksize);
		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
		offset = do_div(logical_sb_block, blocksize);
		bh = sb_bread(sb, logical_sb_block);
		if (!bh) {
			printk(KERN_ERR
			       "EXT4-fs: Can't read superblock on 2nd try.\n");
			goto failed_mount;
		}
		es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
		sbi->s_es = es;
		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
			printk (KERN_ERR
				"EXT4-fs: Magic mismatch, very weird !\n");
			goto failed_mount;
		}
	}
	/* 文件系统的最大文件大小,调用了前边的函数 */
	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits);
	/* inode版本如果是老版本,inode和first ino都是老的值 */
	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
	} else {
		/* 指定的inode大小的偏移值 */
		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
		    (sbi->s_inode_size & (sbi->s_inode_size - 1)) ||
		    (sbi->s_inode_size > blocksize)) {
			printk (KERN_ERR
				"EXT4-fs: unsupported inode size: %d\n",
				sbi->s_inode_size);
			goto failed_mount;
		}
	}
	/* 文件碎片的大小设置和检查 */
	sbi->s_frag_size = EXT4_MIN_FRAG_SIZE <<
				   le32_to_cpu(es->s_log_frag_size);
	if (blocksize != sbi->s_frag_size) {
		printk(KERN_ERR
		       "EXT4-fs: fragsize %lu != blocksize %u (unsupported)\n",
		       sbi->s_frag_size, blocksize);
		goto failed_mount;
	}
	/* 组描述符大小 */
	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
		    sbi->s_desc_size & (sbi->s_desc_size - 1)) {
			printk(KERN_ERR
			       "EXT4-fs: unsupported descriptor size %lu\n",
			       sbi->s_desc_size);
			goto failed_mount;
		}
	} else
		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
	/* 每组的块,inode,碎片数目等字段赋值 */
	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
	sbi->s_frags_per_group = le32_to_cpu(es->s_frags_per_group);
	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
	if (EXT4_INODE_SIZE(sb) == 0)
		goto cantfind_ext4;
	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
	if (sbi->s_inodes_per_block == 0)
		goto cantfind_ext4;
	sbi->s_itb_per_group = sbi->s_inodes_per_group /
					sbi->s_inodes_per_block;
	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
	sbi->s_sbh = bh;
	sbi->s_mount_state = le16_to_cpu(es->s_state);
	sbi->s_addr_per_block_bits = log2(EXT4_ADDR_PER_BLOCK(sb));
	sbi->s_desc_per_block_bits = log2(EXT4_DESC_PER_BLOCK(sb));
	for (i=0; i < 4; i++)
		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
	sbi->s_def_hash_version = es->s_def_hash_version;
	/* 赋值过后的检查,检查结果非法就会跳转到failed_mount */
	if (sbi->s_blocks_per_group > blocksize * 8) {
		printk (KERN_ERR
			"EXT4-fs: #blocks per group too big: %lu\n",
			sbi->s_blocks_per_group);
		goto failed_mount;
	}
	if (sbi->s_frags_per_group > blocksize * 8) {
		printk (KERN_ERR
			"EXT4-fs: #fragments per group too big: %lu\n",
			sbi->s_frags_per_group);
		goto failed_mount;
	}
	if (sbi->s_inodes_per_group > blocksize * 8) {
		printk (KERN_ERR
			"EXT4-fs: #inodes per group too big: %lu\n",
			sbi->s_inodes_per_group);
		goto failed_mount;
	}

	if (ext4_blocks_count(es) >
		    (sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) {
		printk(KERN_ERR "EXT4-fs: filesystem on %s:"
			" too large to mount safely\n", sb->s_id);
		if (sizeof(sector_t) < 8)
			printk(KERN_WARNING "EXT4-fs: CONFIG_LBD not "
					"enabled\n");
		goto failed_mount;
	}

	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
		goto cantfind_ext4;
	/* 组的数目 */
	blocks_count = (ext4_blocks_count(es) -
			le32_to_cpu(es->s_first_data_block) +
			EXT4_BLOCKS_PER_GROUP(sb) - 1);
	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
	sbi->s_groups_count = blocks_count;
	/* 有多少块存放块组描述符 */
	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
		   EXT4_DESC_PER_BLOCK(sb);
	/* 赋值sbi的块组描述符结构体数组 */
	sbi->s_group_desc = kmalloc(db_count * sizeof (struct buffer_head *),
				    GFP_KERNEL);
	if (sbi->s_group_desc == NULL) {
		printk (KERN_ERR "EXT4-fs: not enough memory\n");
		goto failed_mount;
	}
	/* 块组描述符数组的锁 */
	bgl_lock_init(&sbi->s_blockgroup_lock);
	/* 逐个对块组描述符赋值 */
	for (i = 0; i < db_count; i++) {
		block = descriptor_loc(sb, logical_sb_block, i);
		sbi->s_group_desc[i] = sb_bread(sb, block);
		if (!sbi->s_group_desc[i]) {
			printk (KERN_ERR "EXT4-fs: "
				"can't read group descriptor %d\n", i);
			db_count = i;
			goto failed_mount2;
		}
	}
	/* 检查 */
	if (!ext4_check_descriptors (sb)) {
		printk(KERN_ERR "EXT4-fs: group descriptors corrupted!\n");
		goto failed_mount2;
	}
	/* sbi的存放块组描述符的块数目和几个单cpu计数器 */
	sbi->s_gdb_count = db_count;
	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
	spin_lock_init(&sbi->s_next_gen_lock);

	percpu_counter_init(&sbi->s_freeblocks_counter,
		ext4_count_free_blocks(sb));
	percpu_counter_init(&sbi->s_freeinodes_counter,
		ext4_count_free_inodes(sb));
	percpu_counter_init(&sbi->s_dirs_counter,
		ext4_count_dirs(sb));

	/* 每个文件系统的保留快列表和锁初始化 */
	spin_lock_init(&sbi->s_rsv_window_lock);
	sbi->s_rsv_window_root = RB_ROOT;
	/* 保留块窗口变量初始化. */
	sbi->s_rsv_window_head.rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
	sbi->s_rsv_window_head.rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
	sbi->s_rsv_window_head.rsv_alloc_hit = 0;
	sbi->s_rsv_window_head.rsv_goal_size = 0;
	ext4_rsv_window_add(sb, &sbi->s_rsv_window_head);

	/*
	 * 初始化能够读取一个inode的相关资源
	 */
	sb->s_op = &ext4_sops;
	sb->s_export_op = &ext4_export_ops;
	sb->s_xattr = ext4_xattr_handlers;
#ifdef CONFIG_QUOTA
	sb->s_qcop = &ext4_qctl_operations;
	sb->dq_op = &ext4_quota_operations;
#endif
	INIT_LIST_HEAD(&sbi->s_orphan); 
	sb->s_root = NULL;
	/* 有没有错误需要recovery的 */
	needs_recovery = (es->s_last_orphan != 0 ||
			  EXT4_HAS_INCOMPAT_FEATURE(sb,
				    EXT4_FEATURE_INCOMPAT_RECOVER));

	/*
	 * 第一个创建的inode是journal的inode
	 */
	if (!test_opt(sb, NOLOAD) &&
	    EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
		if (ext4_load_journal(sb, es, journal_devnum))
			goto failed_mount3;
	} else if (journal_inum) {
		if (ext4_create_journal(sb, es, journal_inum))
			goto failed_mount3;
	} else {
		if (!silent)
			printk (KERN_ERR
				"ext4: No journal on filesystem on %s\n",
				sb->s_id);
		goto failed_mount3;
	}

	/* 如果有要求的话,我们会更新日志,然后检查日志模式. */
	switch (test_opt(sb, DATA_FLAGS)) {
	case 0:
		/* 没有日志模式设置,根据日志能力设置
		 */
		if (jbd2_journal_check_available_features
		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
			set_opt(sbi->s_mount_opt, ORDERED_DATA);
		else
			set_opt(sbi->s_mount_opt, JOURNAL_DATA);
		break;

	case EXT4_MOUNT_ORDERED_DATA:
	case EXT4_MOUNT_WRITEBACK_DATA:
		if (!jbd2_journal_check_available_features
		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
			printk(KERN_ERR "EXT4-fs: Journal does not support "
			       "requested data journaling mode\n");
			goto failed_mount4;
		}
	default:
		break;
	}
	/* 只有writeback模式下才能NOBH */
	if (test_opt(sb, NOBH)) {
		if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) {
			printk(KERN_WARNING "EXT4-fs: Ignoring nobh option - "
				"its supported only with writeback mode\n");
			clear_opt(sbi->s_mount_opt, NOBH);
		}
	}
	/*
	 * 现在可以挂载文件系统了.分配根节点的inode和dentry
	 */

	root = iget(sb, EXT4_ROOT_INO);
	sb->s_root = d_alloc_root(root);
	if (!sb->s_root) {
		printk(KERN_ERR "EXT4-fs: get root inode failed\n");
		iput(root);
		goto failed_mount4;
	}
	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
		dput(sb->s_root);
		sb->s_root = NULL;
		printk(KERN_ERR "EXT4-fs: corrupt root inode, run e2fsck\n");
		goto failed_mount4;
	}

	ext4_setup_super (sb, es, sb->s_flags & MS_RDONLY);
	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
	ext4_orphan_cleanup(sb, es);
	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
	if (needs_recovery)
		printk (KERN_INFO "EXT4-fs: recovery complete.\n");
	ext4_mark_recovery_complete(sb, es);
	printk (KERN_INFO "EXT4-fs: mounted filesystem with %s data mode.\n",
		test_opt(sb,DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ? "journal":
		test_opt(sb,DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA ? "ordered":
		"writeback");

	ext4_ext_init(sb);

	lock_kernel();
	return 0;

cantfind_ext4:
	if (!silent)
		printk(KERN_ERR "VFS: Can't find ext4 filesystem on dev %s.\n",
		       sb->s_id);
	goto failed_mount;

failed_mount4:
	jbd2_journal_destroy(sbi->s_journal);
failed_mount3:
	percpu_counter_destroy(&sbi->s_freeblocks_counter);
	percpu_counter_destroy(&sbi->s_freeinodes_counter);
	percpu_counter_destroy(&sbi->s_dirs_counter);
failed_mount2:
	for (i = 0; i < db_count; i++)
		brelse(sbi->s_group_desc[i]);
	kfree(sbi->s_group_desc);
failed_mount:
#ifdef CONFIG_QUOTA
	for (i = 0; i < MAXQUOTAS; i++)
		kfree(sbi->s_qf_names[i]);
#endif
	ext4_blkdev_remove(sbi);
	brelse(bh);
out_fail:
	sb->s_fs_info = NULL;
	kfree(sbi);
	lock_kernel();
	return -EINVAL;
}

/*
 * 初始化日志参数,这个操作不仅仅会在挂载的时候执行,在recovery和remount的时候也会执行.
 */
static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
{
	struct ext4_sb_info *sbi = EXT4_SB(sb);

	/* 如果用户传入的commit参数是0的话,就设置为默认的commit时间 */
	if (sbi->s_commit_interval)
		journal->j_commit_interval = sbi->s_commit_interval;

	spin_lock(&journal->j_state_lock);
	if (test_opt(sb, BARRIER))
		journal->j_flags |= JBD2_BARRIER;
	else
		journal->j_flags &= ~JBD2_BARRIER;
	spin_unlock(&journal->j_state_lock);
}
/* 返回ext4的日志结构体 */
static journal_t *ext4_get_journal(struct super_block *sb,
				   unsigned int journal_inum)
{
	struct inode *journal_inode;
	journal_t *journal;
	/* 获得journal的inode,然后检验是不是引用计数为0,这意味着被删除了 */
	journal_inode = iget(sb, journal_inum);
	if (!journal_inode) {
		printk(KERN_ERR "EXT4-fs: no journal found.\n");
		return NULL;
	}
	if (!journal_inode->i_nlink) {
		make_bad_inode(journal_inode);
		iput(journal_inode);
		printk(KERN_ERR "EXT4-fs: journal inode is deleted.\n");
		return NULL;
	}

	jbd_debug(2, "Journal inode found at %p: %Ld bytes\n",
		  journal_inode, journal_inode->i_size);
	/* 检查inode是否合法 */
	if (is_bad_inode(journal_inode) || !S_ISREG(journal_inode->i_mode)) {
		printk(KERN_ERR "EXT4-fs: invalid journal inode.\n");
		iput(journal_inode);
		return NULL;
	}
	/* 调用jbd2模块的初始化函数 */
	journal = jbd2_journal_init_inode(journal_inode);
	if (!journal) {
		printk(KERN_ERR "EXT4-fs: Could not load journal inode\n");
		iput(journal_inode);
		return NULL;
	}
	journal->j_private = sb;
	ext4_init_journal_params(sb, journal);
	return journal;
}
/* 根据用户传入的主次设备号来获得日志结构体 */
static journal_t *ext4_get_dev_journal(struct super_block *sb,
				       dev_t j_dev)
{
	struct buffer_head * bh;
	journal_t *journal;
	ext4_fsblk_t start;
	ext4_fsblk_t len;
	int hblock, blocksize;
	ext4_fsblk_t sb_block;
	unsigned long offset;
	struct ext4_super_block * es;
	struct block_device *bdev;
	/* 根据主次设备号,获得块设备结构体 */
	bdev = ext4_blkdev_get(j_dev);
	if (bdev == NULL)
		return NULL;

	if (bd_claim(bdev, sb)) {
		printk(KERN_ERR
		        "EXT4: failed to claim external journal device.\n");
		blkdev_put(bdev);
		return NULL;
	}
	/* 检查ext4和日志块设备的块大小是不是匹配,要求ext4块大小一定要大于日志块设备的块大小 */
	blocksize = sb->s_blocksize;
	hblock = bdev_hardsect_size(bdev);
	if (blocksize < hblock) {
		printk(KERN_ERR
			"EXT4-fs: blocksize too small for journal device.\n");
		goto out_bdev;
	}
	/* 首先从日志块设备上获得超级块 */
	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
	set_blocksize(bdev, blocksize);
	if (!(bh = __bread(bdev, sb_block, blocksize))) {
		printk(KERN_ERR "EXT4-fs: couldn't read superblock of "
		       "external journal\n");
		goto out_bdev;
	}
	/* 然后获得es结构体 */
	es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
	    !(le32_to_cpu(es->s_feature_incompat) &
	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
		printk(KERN_ERR "EXT4-fs: external journal has "
					"bad superblock\n");
		brelse(bh);
		goto out_bdev;
	}
	/* 检验日志的uuid是不是符合 */
	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
		printk(KERN_ERR "EXT4-fs: journal UUID does not match\n");
		brelse(bh);
		goto out_bdev;
	}

	len = ext4_blocks_count(es);
	start = sb_block + 1;
	brelse(bh);	/* 超级块使用完毕 */
	/* jbd2模块的初始化操作 */
	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
					start, len, blocksize);
	if (!journal) {
		printk(KERN_ERR "EXT4-fs: failed to create device journal\n");
		goto out_bdev;
	}
	journal->j_private = sb;
	/* 经典函数,读j_sb_buffer块 */
	ll_rw_block(READ, 1, &journal->j_sb_buffer);
	/* 等待读取完毕 */
	wait_on_buffer(journal->j_sb_buffer);
	/* 检查是不是uptodate以及是不是仅仅一个user */
	if (!buffer_uptodate(journal->j_sb_buffer)) {
		printk(KERN_ERR "EXT4-fs: I/O error on journal device\n");
		goto out_journal;
	}
	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
		printk(KERN_ERR "EXT4-fs: External journal has more than one "
					"user (unsupported) - %d\n",
			be32_to_cpu(journal->j_superblock->s_nr_users));
		goto out_journal;
	}
	EXT4_SB(sb)->journal_bdev = bdev;
	ext4_init_journal_params(sb, journal);
	return journal;
out_journal:
	jbd2_journal_destroy(journal);
out_bdev:
	ext4_blkdev_put(bdev);
	return NULL;
}
/* 根据日志的主次设备号来进行加载日志操作 */
static int ext4_load_journal(struct super_block *sb,
			     struct ext4_super_block *es,
			     unsigned long journal_devnum)
{
	journal_t *journal;
	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
	dev_t journal_dev;
	int err = 0;
	int really_read_only;
	/* 如果指定了日志设备就用指定的日志设备 */
	if (journal_devnum &&
	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
		printk(KERN_INFO "EXT4-fs: external journal device major/minor "
			"numbers have changed\n");
		journal_dev = new_decode_dev(journal_devnum);
	} else
		/* 使用es的默认日志块设备 */
		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));

	really_read_only = bdev_read_only(sb->s_bdev);

	/*
	 * 如果我们在recovery,我们需要检查是不是拥有对设备的读写权限.
	 */

	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
		if (sb->s_flags & MS_RDONLY) {
			printk(KERN_INFO "EXT4-fs: INFO: recovery "
					"required on readonly filesystem.\n");
			if (really_read_only) {
				printk(KERN_ERR "EXT4-fs: write access "
					"unavailable, cannot proceed.\n");
				return -EROFS;
			}
			printk (KERN_INFO "EXT4-fs: write access will "
					"be enabled during recovery.\n");
		}
	}
	/* journalinum和日志块设备不能共存 */
	if (journal_inum && journal_dev) {
		printk(KERN_ERR "EXT4-fs: filesystem has both journal "
		       "and inode journals!\n");
		return -EINVAL;
	}
	/* 获得日志结构体 */
	if (journal_inum) {
		if (!(journal = ext4_get_journal(sb, journal_inum)))
			return -EINVAL;
	} else {
		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
			return -EINVAL;
	}
	/* 获得日志结构体以后,检查是不是把日志需要更新为当前的格式 */
	if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
		err = jbd2_journal_update_format(journal);
		if (err)  {
			printk(KERN_ERR "EXT4-fs: error updating journal.\n");
			jbd2_journal_destroy(journal);
			return err;
		}
	}

	if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
		err = jbd2_journal_wipe(journal, !really_read_only);
	if (!err)
		err = jbd2_journal_load(journal);

	if (err) {
		printk(KERN_ERR "EXT4-fs: error loading journal.\n");
		jbd2_journal_destroy(journal);
		return err;
	}

	EXT4_SB(sb)->s_journal = journal;
	ext4_clear_journal_err(sb, es);

	if (journal_devnum &&
	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
		es->s_journal_dev = cpu_to_le32(journal_devnum);
		sb->s_dirt = 1;

		/* 把recovery的flag刷新到磁盘 */
		ext4_commit_super(sb, es, 1);
	}

	return 0;
}
/* 创建日志结构体 */
static int ext4_create_journal(struct super_block * sb,
			       struct ext4_super_block * es,
			       unsigned int journal_inum)
{
	journal_t *journal;
	/* 检查,只读情况下返回错误 */
	if (sb->s_flags & MS_RDONLY) {
		printk(KERN_ERR "EXT4-fs: readonly filesystem when trying to "
				"create journal.\n");
		return -EROFS;
	}
	/* 通过日志的inode号码返回日志结构体 */
	if (!(journal = ext4_get_journal(sb, journal_inum)))
		return -EINVAL;

	printk(KERN_INFO "EXT4-fs: creating new journal on inode %u\n",
	       journal_inum);
	/* jbd2的真正创建的函数 */
	if (jbd2_journal_create(journal)) {
		printk(KERN_ERR "EXT4-fs: error creating journal.\n");
		jbd2_journal_destroy(journal);
		return -EIO;
	}
	/* 存储日志结构体 */
	EXT4_SB(sb)->s_journal = journal;

	ext4_update_dynamic_rev(sb);
	/* feature的设置 */
	EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
	EXT4_SET_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL);

	es->s_journal_inum = cpu_to_le32(journal_inum);
	sb->s_dirt = 1;

	/* 把recovery的flag写到磁盘. */
	ext4_commit_super(sb, es, 1);

	return 0;
}
/* 把超级块写入到磁盘 */
static void ext4_commit_super (struct super_block * sb,
			       struct ext4_super_block * es,
			       int sync)
{
	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;

	if (!sbh)
		return;
	/* 写入时间的修改 */
	es->s_wtime = cpu_to_le32(get_seconds());
	ext4_free_blocks_count_set(es, ext4_count_free_blocks(sb));
	es->s_free_inodes_count = cpu_to_le32(ext4_count_free_inodes(sb));
	BUFFER_TRACE(sbh, "marking dirty");
	/* 标记缓冲区首部为脏 */
	mark_buffer_dirty(sbh);
	/* 然后同步 */
	if (sync)
		sync_dirty_buffer(sbh);
}


/*
 * recovry结束了以后,如果我们在mount或者remount为只读,我们就需要在日志上记录 */
static void ext4_mark_recovery_complete(struct super_block * sb,
					struct ext4_super_block * es)
{
	journal_t *journal = EXT4_SB(sb)->s_journal;

	jbd2_journal_lock_updates(journal);
	jbd2_journal_flush(journal);
	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
	    sb->s_flags & MS_RDONLY) {
		/* 正在recovery并且还是只读,把super的修改写入到磁盘 */
		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
		sb->s_dirt = 0;
		ext4_commit_super(sb, es, 1);
	}
	jbd2_journal_unlock_updates(journal);
}

/*
 * 如果我们挂载的fs记录了一个错误,我们需要把错误放到主文件系统中
 */
static void ext4_clear_journal_err(struct super_block * sb,
				   struct ext4_super_block * es)
{
	journal_t *journal;
	int j_errno;
	const char *errstr;

	journal = EXT4_SB(sb)->s_journal;

	/*
	 * 检查状态,如果有错误,用ext4_error()或者ext4_abort()
	 */

	j_errno = jbd2_journal_errno(journal);
	if (j_errno) {
		char nbuf[16];
		/* 把错误转换成字符串 */
		errstr = ext4_decode_error(sb, j_errno, nbuf);
		/* 打印错误 */
		ext4_warning(sb, __FUNCTION__, "Filesystem error recorded "
			     "from previous mount: %s", errstr);
		ext4_warning(sb, __FUNCTION__, "Marking fs in need of "
			     "filesystem check.");
		/* es和sbi结构体都要记录错误,然后把超级块写入到磁盘 */
		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
		ext4_commit_super (sb, es, 1);
		/* 记录结束以后,清理错误字段 */
		jbd2_journal_clear_err(journal);
	}
}

/*
 * 强制提交事务,等待结束.
 */
int ext4_force_commit(struct super_block *sb)
{
	journal_t *journal;
	int ret;

	if (sb->s_flags & MS_RDONLY)
		return 0;

	journal = EXT4_SB(sb)->s_journal;
	sb->s_dirt = 0;
	ret = ext4_journal_force_commit(journal);
	return ret;
}

/*
 * Ext4通过日志写入超级块,我们不必手动写入,仅仅是启动writeback即可
 */

static void ext4_write_super (struct super_block * sb)
{
	if (mutex_trylock(&sb->s_lock) != 0)
		BUG();
	sb->s_dirt = 0;
}

static int ext4_sync_fs(struct super_block *sb, int wait)
{
	tid_t target;

	sb->s_dirt = 0;
	if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, &target)) {
		if (wait)
			jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, target);
	}
	return 0;
}

/*
 * LVM会调用这个函数,在一个只读快照创建之前。这个函数会把日志全部写入磁盘.
 */
static void ext4_write_super_lockfs(struct super_block *sb)
{
	sb->s_dirt = 0;

	if (!(sb->s_flags & MS_RDONLY)) {
		journal_t *journal = EXT4_SB(sb)->s_journal;

		/* 启动日志barriar. */
		jbd2_journal_lock_updates(journal);
		jbd2_journal_flush(journal);

		EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
		ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1);
	}
}

/*
 * 当LVM的日志创建操作结束以后调用,重新设置RECOVER的flag
 */
static void ext4_unlockfs(struct super_block *sb)
{
	if (!(sb->s_flags & MS_RDONLY)) {
		lock_super(sb);
		EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
		ext4_commit_super(sb, EXT4_SB(sb)->s_es, 1);
		unlock_super(sb);
		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
	}
}
/* remount的函数 */
static int ext4_remount (struct super_block * sb, int * flags, char * data)
{
	struct ext4_super_block * es;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	ext4_fsblk_t n_blocks_count = 0;
	unsigned long old_sb_flags;
	struct ext4_mount_options old_opts;
	int err;
#ifdef CONFIG_QUOTA
	int i;
#endif

	/* 存储原先的挂载选项 */
	old_sb_flags = sb->s_flags;
	old_opts.s_mount_opt = sbi->s_mount_opt;
	old_opts.s_resuid = sbi->s_resuid;
	old_opts.s_resgid = sbi->s_resgid;
	old_opts.s_commit_interval = sbi->s_commit_interval;
#ifdef CONFIG_QUOTA
	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
	for (i = 0; i < MAXQUOTAS; i++)
		old_opts.s_qf_names[i] = sbi->s_qf_names[i];
#endif

	/*
	 * 检查选项从而使用新的挂载选项.
	 */
	if (!parse_options(data, sb, NULL, NULL, &n_blocks_count, 1)) {
		err = -EINVAL;
		goto restore_opts;
	}

	if (sbi->s_mount_opt & EXT4_MOUNT_ABORT)
		ext4_abort(sb, __FUNCTION__, "Abort forced by user");

	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
		((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);

	es = sbi->s_es;
	/* 初始化新的日志参数 */
	ext4_init_journal_params(sb, sbi->s_journal);

	if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
		n_blocks_count > ext4_blocks_count(es)) {
		if (sbi->s_mount_opt & EXT4_MOUNT_ABORT) {
			err = -EROFS;
			goto restore_opts;
		}
		/* 要只读挂载 */
		if (*flags & MS_RDONLY) {
			/*
			 * 首先设置超级块的flag为只读的
			 */
			sb->s_flags |= MS_RDONLY;
			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
			    (sbi->s_mount_state & EXT4_VALID_FS))
				es->s_state = cpu_to_le16(sbi->s_mount_state);

			ext4_mark_recovery_complete(sb, es);
		} else {
			__le32 ret;
			/* 如果原先是只读的,并且不支持非只读挂载,打印错误 */
			if ((ret = EXT4_HAS_RO_COMPAT_FEATURE(sb,
					~EXT4_FEATURE_RO_COMPAT_SUPP))) {
				printk(KERN_WARNING "EXT4-fs: %s: couldn't "
				       "remount RDWR because of unsupported "
				       "optional features (%x).\n",
				       sb->s_id, le32_to_cpu(ret));
				err = -EROFS;
				goto restore_opts;
			}
			/*
			 * 挂载文件系统为可读写的
			 */
			ext4_clear_journal_err(sb, es);
			sbi->s_mount_state = le16_to_cpu(es->s_state);
			if ((err = ext4_group_extend(sb, es, n_blocks_count)))
				goto restore_opts;
			if (!ext4_setup_super (sb, es, 0))
				sb->s_flags &= ~MS_RDONLY;
		}
	}
#ifdef CONFIG_QUOTA
	/* 释放原先的配额限制字符串 */
	for (i = 0; i < MAXQUOTAS; i++)
		if (old_opts.s_qf_names[i] &&
		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
			kfree(old_opts.s_qf_names[i]);
#endif
	return 0;
restore_opts:
	sb->s_flags = old_sb_flags;
	sbi->s_mount_opt = old_opts.s_mount_opt;
	sbi->s_resuid = old_opts.s_resuid;
	sbi->s_resgid = old_opts.s_resgid;
	sbi->s_commit_interval = old_opts.s_commit_interval;
#ifdef CONFIG_QUOTA
	/* 新的配额字符串 */
	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
	for (i = 0; i < MAXQUOTAS; i++) {
		if (sbi->s_qf_names[i] &&
		    old_opts.s_qf_names[i] != sbi->s_qf_names[i])
			kfree(sbi->s_qf_names[i]);
		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
	}
#endif
	return err;
}
/* 返回ext4的文件系统状态,存放在buf里 */
static int ext4_statfs (struct dentry * dentry, struct kstatfs * buf)
{
	struct super_block *sb = dentry->d_sb;
	struct ext4_sb_info *sbi = EXT4_SB(sb);
	struct ext4_super_block *es = sbi->s_es;
	ext4_fsblk_t overhead;
	int i;
	/* 如果是minix的文件系统,开始就是状态信息,不需要向后移动 */
	if (test_opt (sb, MINIX_DF))
		overhead = 0;
	else {
		unsigned long ngroups;
		/* 组的数目 */
		ngroups = EXT4_SB(sb)->s_groups_count;
		smp_rmb();

		/*
		 * 计算偏移
		 */

		/*
		 * first_data_block之前的都是数据偏移*/
		overhead = le32_to_cpu(es->s_first_data_block);

		/*
		 * Add the overhead attributed to the superblock and
		 * block group descriptors.  If the sparse superblocks
		 * feature is turned on, then not all groups have this.
		 */
		for (i = 0; i < ngroups; i++) {
			overhead += ext4_bg_has_super(sb, i) +
				ext4_bg_num_gdb(sb, i);
			cond_resched();
		}

		/*
		 * 每一个块组都有inode位图,数据块位图,inode table
		 */
		overhead += (ngroups * (2 + EXT4_SB(sb)->s_itb_per_group));
	}
	/* buf的赋值 */
	buf->f_type = EXT4_SUPER_MAGIC;
	buf->f_bsize = sb->s_blocksize;
	buf->f_blocks = ext4_blocks_count(es) - overhead;
	buf->f_bfree = percpu_counter_sum(&sbi->s_freeblocks_counter);
	buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
	if (buf->f_bfree < ext4_r_blocks_count(es))
		buf->f_bavail = 0;
	buf->f_files = le32_to_cpu(es->s_inodes_count);
	buf->f_ffree = percpu_counter_sum(&sbi->s_freeinodes_counter);
	buf->f_namelen = EXT4_NAME_LEN;
	return 0;
}

/* 帮助配额同步的函数,在配额文件写入之前我们必须锁住  */

#ifdef CONFIG_QUOTA
/* 返回配额文件的inode */
static inline struct inode *dquot_to_inode(struct dquot *dquot)
{
	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
}
/* 配额限制的初始化 */
static int ext4_dquot_initialize(struct inode *inode, int type)
{
	handle_t *handle;
	int ret, err;

	/* 我们创建配额结构体,所以需要足够的保留块 */
	handle = ext4_journal_start(inode, 2*EXT4_QUOTA_INIT_BLOCKS(inode->i_sb));
	if (IS_ERR(handle))
		return PTR_ERR(handle);
	/* 配额初始化函数 */
	ret = dquot_initialize(inode, type);
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;
	return ret;
}
/* 释放配额结构体 */
static int ext4_dquot_drop(struct inode *inode)
{
	handle_t *handle;
	int ret, err;

	handle = ext4_journal_start(inode, 2*EXT4_QUOTA_DEL_BLOCKS(inode->i_sb));
	if (IS_ERR(handle))
		return PTR_ERR(handle);
	ret = dquot_drop(inode);
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;
	return ret;
}
/* 写入配额结构体 */
static int ext4_write_dquot(struct dquot *dquot)
{
	int ret, err;
	handle_t *handle;
	struct inode *inode;
	/* 配额文件的inode */
	inode = dquot_to_inode(dquot);
	handle = ext4_journal_start(inode,
					EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
	if (IS_ERR(handle))
		return PTR_ERR(handle);
	/* 写入函数 */
	ret = dquot_commit(dquot);
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;
	return ret;
}
/* 获得配额结构体 */
static int ext4_acquire_dquot(struct dquot *dquot)
{
	int ret, err;
	handle_t *handle;

	handle = ext4_journal_start(dquot_to_inode(dquot),
					EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
	if (IS_ERR(handle))
		return PTR_ERR(handle);
	ret = dquot_acquire(dquot);
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;
	return ret;
}
/* 释放配额结构体 */
static int ext4_release_dquot(struct dquot *dquot)
{
	int ret, err;
	handle_t *handle;

	handle = ext4_journal_start(dquot_to_inode(dquot),
					EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
	if (IS_ERR(handle))
		return PTR_ERR(handle);
	ret = dquot_release(dquot);
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;
	return ret;
}
/* 标记配额结构体脏 */
static int ext4_mark_dquot_dirty(struct dquot *dquot)
{
	/* 判断我们会不会对配额进行日志操作 */
	if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
	    EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
		dquot_mark_dquot_dirty(dquot);
		return ext4_write_dquot(dquot);
	} else {
		return dquot_mark_dquot_dirty(dquot);
	}
}
/* 配额信息写入 */
static int ext4_write_info(struct super_block *sb, int type)
{
	int ret, err;
	handle_t *handle;

	/* 数据块+inode块一共两个 */
	handle = ext4_journal_start(sb->s_root->d_inode, 2);
	if (IS_ERR(handle))
		return PTR_ERR(handle);
	/* 调用dquot的函数提交信息 */
	ret = dquot_commit_info(sb, type);
	err = ext4_journal_stop(handle);
	if (!ret)
		ret = err;
	return ret;
}

/*
 * 打开配额
 */
static int ext4_quota_on_mount(struct super_block *sb, int type)
{
	return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
			EXT4_SB(sb)->s_jquota_fmt, type);
}

/*
 * 配额打开的时候调用的标准函数
 */
static int ext4_quota_on(struct super_block *sb, int type, int format_id,
			 char *path)
{
	int err;
	struct nameidata nd;
	/* 不支持配额就直接退出 */
	if (!test_opt(sb, QUOTA))
		return -EINVAL;
	/* 没有找到配额限制 */
	if (!EXT4_SB(sb)->s_qf_names[USRQUOTA] &&
	    !EXT4_SB(sb)->s_qf_names[GRPQUOTA])
		return vfs_quota_on(sb, type, format_id, path);
	err = path_lookup(path, LOOKUP_FOLLOW, &nd);
	if (err)
		return err;
	/* 配额文件不在这个文件系统里 */
	if (nd.mnt->mnt_sb != sb) {
		path_release(&nd);
		return -EXDEV;
	}
	/* 配额文件不在根目录 */
	if (nd.dentry->d_parent->d_inode != sb->s_root->d_inode)
		printk(KERN_WARNING
			"EXT4-fs: Quota file not on filesystem root. "
			"Journalled quota will not work.\n");
	path_release(&nd);
	return vfs_quota_on(sb, type, format_id, path);
}

/* 从配额文件里读取配额限制,不从pagecache中读取,这样就避免了获取锁,因为配额文件不会被截断 */
static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
			       size_t len, loff_t off)
{
	struct inode *inode = sb_dqopt(sb)->files[type];
	/* 计算出来配额文件的块数和块内偏移 */
	sector_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
	int err = 0;
	int offset = off & (sb->s_blocksize - 1);
	int tocopy;
	size_t toread;
	struct buffer_head *bh;
	loff_t i_size = i_size_read(inode);

	if (off > i_size)
		return 0;
	if (off+len > i_size)
		len = i_size-off;
	toread = len;
	/* 循环读取配额文件内容 */
	while (toread > 0) {
		tocopy = sb->s_blocksize - offset < toread ?
				sb->s_blocksize - offset : toread;
		bh = ext4_bread(NULL, inode, blk, 0, &err);
		if (err)
			return err;
		if (!bh)	/* A hole? */
			memset(data, 0, tocopy);
		else
			memcpy(data, bh->b_data+offset, tocopy);
		brelse(bh);
		offset = 0;
		toread -= tocopy;
		data += tocopy;
		blk++;
	}
	return len;
}

/* 写入配额文件 */
static ssize_t ext4_quota_write(struct super_block *sb, int type,
				const char *data, size_t len, loff_t off)
{
	struct inode *inode = sb_dqopt(sb)->files[type];
	/* 计算出来配额文件的块数和块内偏移 */
	sector_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
	int err = 0;
	int offset = off & (sb->s_blocksize - 1);
	int tocopy;
	int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL;
	size_t towrite = len;
	struct buffer_head *bh;
	handle_t *handle = journal_current_handle();
	/* 写入之前先锁,然后循环读取配额,然后修改内容 */
	mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
	while (towrite > 0) {
		tocopy = sb->s_blocksize - offset < towrite ?
				sb->s_blocksize - offset : towrite;
		/* 读取至缓冲区首部 */
		bh = ext4_bread(handle, inode, blk, 1, &err);
		if (!bh)
			goto out;
		if (journal_quota) {
			err = ext4_journal_get_write_access(handle, bh);
			if (err) {
				brelse(bh);
				goto out;
			}
		}
		lock_buffer(bh);
		/* 写入修改 */
		memcpy(bh->b_data+offset, data, tocopy);
		flush_dcache_page(bh->b_page);
		unlock_buffer(bh);
		/* 如果有配额日志的话就要日志修改 */
		if (journal_quota)
			err = ext4_journal_dirty_metadata(handle, bh);
		else {
			/* Always do at least ordered writes for quotas */
			err = ext4_journal_dirty_data(handle, bh);
			mark_buffer_dirty(bh);
		}
		brelse(bh);
		if (err)
			goto out;
		offset = 0;
		towrite -= tocopy;
		data += tocopy;
		blk++;
	}
out:
	if (len == towrite)
		return err;
	if (inode->i_size < off+len-towrite) {
		i_size_write(inode, off+len-towrite);
		EXT4_I(inode)->i_disksize = inode->i_size;
	}
	inode->i_version++;
	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
	ext4_mark_inode_dirty(handle, inode);
	mutex_unlock(&inode->i_mutex);
	return len - towrite;
}

#endif
/* 获取超级块 */
static int ext4_get_sb(struct file_system_type *fs_type,
	int flags, const char *dev_name, void *data, struct vfsmount *mnt)
{
	return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super, mnt);
}
/* 注册文件系统的结构体 */
static struct file_system_type ext4dev_fs_type = {
	.owner		= THIS_MODULE,
	.name		= "ext4dev",
	.get_sb		= ext4_get_sb,
	.kill_sb	= kill_block_super,
	.fs_flags	= FS_REQUIRES_DEV,
};
/* ext4的模块初始化函数 */
static int __init init_ext4_fs(void)
{
	/* 一次初始化扩展属性,inode缓存 */
	int err = init_ext4_xattr();
	if (err)
		return err;
	err = init_inodecache();
	if (err)
		goto out1;
	/* 注册ext4文件系统 */
	err = register_filesystem(&ext4dev_fs_type);
	if (err)
		goto out;
	return 0;
out:
	destroy_inodecache();
out1:
	exit_ext4_xattr();
	return err;
}

static void __exit exit_ext4_fs(void)
{
	unregister_filesystem(&ext4dev_fs_type);
	destroy_inodecache();
	exit_ext4_xattr();
}

MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
MODULE_DESCRIPTION("Fourth Extended Filesystem with extents");
MODULE_LICENSE("GPL");
module_init(init_ext4_fs)
module_exit(exit_ext4_fs)


發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章