8、多态

多态是面向对象编程语言中,继数据抽象和继承之外的第三个重要特性.

多态提供了另一个维度的接口与实现分离,以解耦做什么和怎么做。

封装通过合并特征和行为来创建新的数据类型。隐藏实现通过将细节私有化把接口与实现分离。这种类型的组织机制对于有面向过程编程背景的人来说,更容易理解。而多态是消除类型之间的耦合。

继承允许把一个对象视为它本身的类型或它的基类类型。这样就能把很多派生自一个基类的类型当作同一类型处理,因而一段代码就可以无差别地运行在所有不同的类型上了。多态方法调用允许一种类型表现出与相似类型的区别,只要这些类型派生自一个基类。这种区别是当你通过基类调用时,由方法的不同行为表现出来的。

1、方法调用绑定

把一个对象引用当作它的基类引用的做法称为向上转型,因为继承图中基类一般都位于最上方。

  • 前期绑定:将一个方法调用和一个方法主体关联起来称作绑定。若绑定发生在程序运行前(如果有的话,由编译器和链接器实现),叫做前期绑定。你可能从来没有听说这个术语,因为它是面向过程语言不需选择默认的绑定方式,例如在C 语言中就只有前期绑定这一种方法调用。

  • 后期绑定:在运行时根据对象的类型进行绑定。后期绑定也称为动态绑定或运行时绑定。
    当一种语言实现了后期绑定,就必须具有某种机制在运行时能判断对象的类型,从而调用恰当的方法。也就是说,编译器仍然不知道对象的类型,但是方法调用机制能找到正确的方法体并调用。每种语言的后期绑定机制都不同,但是可以想到,对象中一定存在某种类型信息。

Java 中除了 static 和 final 方法(private 方法也是隐式的 final)外,其他所有方法都是后期绑定。

将一个对象指明为 final。它可以防止方法被重写。但更重要的一点可能是,它有效地”关闭了“动态绑定,或者说告诉编译器不需要对其进行动态绑定。

2、产生正确的行为

一旦当你知道 Java 中所有方法都是通过后期绑定来实现多态时,就可以编写只与基类打交道的代码,而且代码对于派生类来说都能正常地工作。或者换种说法,你向对象发送一条消息,让对象自己做正确的事。

在编译时,编译器不需要知道任何具体信息以进行正确的调用。

3、陷阱

3.1 不要“重写”私有方法

只有非 private 方法才能被重写,但是得小心重写 private 方法的现象,编译器不报错,但不会按我们所预期的执行。为了清晰起见,派生类中的方法名采用与基类中 private 方法名不同的命名。

如果使用了 @Override 注解,就能检测出问题。

3.2 属性与静态方法没有多态

只有普通的方法调用可以是多态的。例如,如果你直接访问一个属性,该访问会在编译时解析:

// polymorphism/FieldAccess.java
// Direct field access is determined at compile time
class Super {
    public int field = 0;

    public int getField() {
        return field;
    }
}

class Sub extends Super {
    public int field = 1;

    @Override
    public int getField() {
        return field;
    }

    public int getSuperField() {
        return super.field;
    }
}

public class FieldAccess {
    public static void main(String[] args) {
        Super sup = new Sub(); // Upcast
        System.out.println("sup.field = " + sup.field + 
                          ", sup.getField() = " + sup.getField());
        Sub sub = new Sub();
        System.out.println("sub.field = " + sub.field + 
                          ", sub.getField() = " + sub.getField()
                          + ", sub.getSuperField() = " + sub.getSuperField())
    }
}

输出:

sup.field = 0, sup.getField() = 1
sub.field = 1, sub.getField() = 1, sub.getSuperField() = 0

当 Sub 对象向上转型为 Super 引用时,任何属性访问都被编译器解析,因此不是多态的。在这个例子中,Super.field 和 Sub.field 被分配了不同的存储空间,因此,Sub 实际上包含了两个称为 field 的属性:它自己的和来自 Super 的。然而,在引用 Sub 的 field 时,默认的 field 属性并不是 Super 版本的 field 属性。为了获取 Super 的 field 属性,需要显式地指明 super.field。

如果一个方法是静态(static)的,它的行为就不具有多态性:

// polymorphism/StaticPolymorphism.java
// static methods are not polymorphic
class StaticSuper {
    public static String staticGet() {
        return "Base staticGet()";
    }

    public String dynamicGet() {
        return "Base dynamicGet()";
    }
}

class StaticSub extends StaticSuper {
    public static String staticGet() {
        return "Derived staticGet()";
    }
    @Override
    public String dynamicGet() {
        return "Derived dynamicGet()";
    }
}

public class StaticPolymorphism {
    public static void main(String[] args) {
        StaticSuper sup = new StaticSub(); // Upcast
        System.out.println(StaticSuper.staticGet());
        System.out.println(sup.dynamicGet());
    }
}

输出:

Base staticGet()
Derived dynamicGet()

静态的方法只与类关联,与单个的对象无关。

4、构造器和多态

4.1、构造器调用顺序

在派生类的构造过程中总会调用基类的构造器。初始化会自动按继承层次结构上移,因此每个基类的构造器都会被调用到。这么做是有意义的,因为**构造器有着特殊的任务:检查对象是否被正确地构造。**由于属性通常声明为 private,你必须假定派生类只能访问自己的成员而不能访问基类的成员。只有基类的构造器拥有恰当的知识和权限来初始化自身的元素。**因此,必须得调用所有构造器;否则就不能构造完整的对象。**这就是编译器强制每个派生类部分必须调用构造器的原因。如果在派生类的构造器主体中没有显式地调用基类构造器,编译器就会默默地调用无参构造器。如果没有无参构造器,编译器就会报错(当类中不含构造器时,编译器会自动合成一个无参构造器)。

package polymorphism;

class Meal {
    Meal() {
        System.out.println("Meal()");
    }
}

class Bread {
    Bread() {
        System.out.println("Bread()");
    }
}

class Cheese {
    Cheese() {
        System.out.println("Cheese()");
    }
}

class Lettuce {
    Lettuce() {
        System.out.println("Lettuce()");
    }
}

class Lunch extends Meal {
    Lunch() {
        System.out.println("Lunch()");
    }
}

class PortableLunch extends Lunch {
    PortableLunch() {
        System.out.println("PortableLunch()");
    }
}

public class Sandwich extends PortableLunch {
    private Bread b = new Bread();
    private Cheese c = new Cheese();
    private Lettuce l = new Lettuce();

    public Sandwich() {
        System.out.println("Sandwich()");
    }

    public static void main(String[] args) {
        new Sandwich();
    }
}
Meal()
Lunch()
PortableLunch()
Bread()
Cheese()
Lettuce()
Sandwich()

从创建 Sandwich 对象的输出中可以看出对象的构造器调用顺序如下:

  1. 基类构造器被调用。这个步骤被递归地重复,这样一来类层次的顶级父类会被最先构造,然后是它的派生类,以此类推,直到最底层的派生类。
  2. 按声明顺序初始化成员。
  3. 调用派生类构造器的方法体。

在构造器中必须确保所有的成员都已经构建完。唯一能保证这点的方法就是首先调用基类的构造器。接着,在派生类的构造器中,所有你可以访问的基类成员都已经初始化。另一个在构造器中能知道所有成员都是有效的理由是:无论何时有可能的话,你应该在所有成员对象(通过组合将对象置于类中)定义处初始化它们(例如,例子中的 b、c 和 l)。如果遵循这条实践,就可以帮助确保所有的基类成员和当前对象的成员对象都已经初始化。

4.2、继承和清理

在使用组合和继承创建新类时,大部分时候你无需关心清理。子对象通常会留给垃圾收集器处理。如果你存在清理问题,那么必须用心地为新类创建一个 dispose() 方法(这里用的是我选择的名称,你可以使用更好的名称)。**由于继承,如果有其他特殊的清理工作的话,就必须在派生类中重写 dispose() 方法。**当重写 dispose() 方法时,记得调用基类的 dispose() 方法,否则基类的清理工作不会发生:

// polymorphism/Frog.java
// Cleanup and inheritance
// {java polymorphism.Frog}
package polymorphism;

class Characteristic {
    private String s;

    Characteristic(String s) {
        this.s = s;
        System.out.println("Creating Characteristic " + s);
    }

    protected void dispose() {
        System.out.println("disposing Characteristic " + s);
    }
}

class Description {
    private String s;

    Description(String s) {
        this.s = s;
        System.out.println("Creating Description " + s);
    }

    protected void dispose() {
        System.out.println("disposing Description " + s);
    }
}

class LivingCreature {
    private Characteristic p = new Characteristic("is alive");
    private Description t = new Description("Basic Living Creature");

    LivingCreature() {
        System.out.println("LivingCreature()");
    }

    protected void dispose() {
        System.out.println("LivingCreature dispose");
        t.dispose();
        p.dispose();
    }
}

class Animal extends LivingCreature {
    private Characteristic p = new Characteristic("has heart");
    private Description t = new Description("Animal not Vegetable");

    Animal() {
        System.out.println("Animal()");
    }

    @Override
    protected void dispose() {
        System.out.println("Animal dispose");
        t.dispose();
        p.dispose();
        super.dispose();
    }
}

class Amphibian extends Animal {
    private Characteristic p = new Characteristic("can live in water");
    private Description t = new Description("Both water and land");

    Amphibian() {
        System.out.println("Amphibian()");
    }

    @Override
    protected void dispose() {
        System.out.println("Amphibian dispose");
        t.dispose();
        p.dispose();
        super.dispose();
    }
}

public class Frog extends Amphibian {
    private Characteristic p = new Characteristic("Croaks");
    private Description t = new Description("Eats Bugs");

    public Frog() {
        System.out.println("Frog()");
    }

    @Override
    protected void dispose() {
        System.out.println("Frog dispose");
        t.dispose();
        p.dispose();
        super.dispose();
    }

    public static void main(String[] args) {
        Frog frog = new Frog();
        System.out.println("Bye!");
        frog.dispose();
    }
}

运行结果:

Creating Characteristic is alive
Creating Description Basic Living Creature
LivingCreature()
Creating Characteristiv has heart
Creating Description Animal not Vegetable
Animal()
Creating Characteristic can live in water
Creating Description Both water and land
Amphibian()
Creating Characteristic Croaks
Creating Description Eats Bugs
Frog()
Bye!
Frog dispose
disposing Description Eats Bugs
disposing Characteristic Croaks
Amphibian dispose
disposing Description Both wanter and land
disposing Characteristic can live in water
Animal dispose
disposing Description Animal not Vegetable
disposing Characteristic has heart
LivingCreature dispose
disposing Description Basic Living Creature
disposing Characteristic is alive

销毁的顺序应该与初始化的顺序相反,以防一个对象依赖另一个对象。

然而,一旦某个成员对象被其它一个或多个对象共享时,问题就变得复杂了,不能只是简单地调用 dispose()。这里,也许就必须使用引用计数来跟踪仍然访问着共享对象的对象数量:

// polymorphism/ReferenceCounting.java
// Cleaning up shared member objects
class Shared {
    private int refcount = 0;
    private static long counter = 0;
    private final long id = counter++;

    Shared() {
        System.out.println("Creating " + this);
    }

    public void addRef() {
        refcount++;
    }

    protected void dispose() {
        if (--refcount == 0) {
            System.out.println("Disposing " + this);
        }
    }

    @Override
    public String toString() {
        return "Shared " + id;
    }
}

class Composing {
    private Shared shared;
    private static long counter = 0;
    private final long id = counter++;

    Composing(Shared shared) {
        System.out.println("Creating " + this);
        this.shared = shared;
        this.shared.addRef();
    }

    protected void dispose() {
        System.out.println("disposing " + this);
        shared.dispose();
    }

    @Override
    public String toString() {
        return "Composing " + id;
    }
}

public class ReferenceCounting {
    public static void main(String[] args) {
        Shared shared = new Shared();
        Composing[] composing = {
            new Composing(shared),
            new Composing(shared),
            new Composing(shared),
            new Composing(shared),
            new Composing(shared),
        };
        for (Composing c: composing) {
            c.dispose();
        }
    }
}

运行结果:

Creating Shared 0
Creating Composing 0
Creating Composing 1
Creating Composing 2
Creating Composing 3
Creating Composing 4
disposing Composing 0
disposing Composing 1
disposing Composing 2
disposing Composing 3
disposing Composing 4
Disposing Shared 0

在将一个 shared 对象附着在类上时,必须记住调用 addRef(),而 dispose() 方法会跟踪引用数,以确定在何时真正地执行清理工作。使用这种技巧需要加倍细心,但是如果正在共享需要被清理的对象,就没有太多选择了。

4.3、构造器内部多态方法行为

如果在构造器中调用了正在构造的对象的动态绑定方法,会发生什么呢?
在普通的方法中,动态绑定的调用是在运行时解析的,因为对象不知道它属于方法所在的类还是类的派生类。
如果在构造器中调用了动态绑定方法,就会用到那个方法的重写定义。

从概念上讲,构造器的工作就是创建对象(这并非是平常的工作)。**在构造器内部,整个对象可能只是部分形成——只知道基类对象已经初始化。**如果构造器只是构造对象过程中的一个步骤,且构造的对象所属的类是从构造器所属的类派生出的,那么派生部分在当前构造器被调用时还没有初始化。

然而,一个动态绑定的方法调用向外深入到继承层次结构中,它可以调用派生类的方法。如果你在构造器中这么做,就可能调用一个方法,该方法操纵的成员可能还没有初始化——这肯定会带来灾难。

// polymorphism/PolyConstructors.java
// Constructors and polymorphism
// don't produce what you might expect
class Glyph {
    void draw() {
        System.out.println("Glyph.draw()");
    }

    Glyph() {
        System.out.println("Glyph() before draw()");
        draw();
        System.out.println("Glyph() after draw()");
    }
}

class RoundGlyph extends Glyph {
    private int radius = 1;

    RoundGlyph(int r) {
        radius = r;
        System.out.println("RoundGlyph.RoundGlyph(), radius = " + radius);
    }

    @Override
    void draw() {
        System.out.println("RoundGlyph.draw(), radius = " + radius);
    }
}

public class PolyConstructors {
    public static void main(String[] args) {
        new RoundGlyph(5);
    }
}

输出:

Glyph() before draw()
RoundGlyph.draw(), radius = 0
Glyph() after draw()
RoundGlyph.RoundGlyph(), radius = 5

Glyph 的 draw() 被设计为可重写,在 RoundGlyph 这个方法被重写。但是 Glyph 的构造器里调用了这个方法,结果调用了 RoundGlyph 的 draw() 方法。

初始化的实际过程是:

  1. 在所有事发生前,分配给对象的存储空间会被初始化为二进制 0。
  2. 如前所述调用基类构造器。此时调用重写后的 draw() 方法(是的,在调用 RoundGraph 构造器之前调用),由步骤 1 可知,radius 的值为 0。
  3. 按声明顺序初始化成员。
  4. 最终调用派生类的构造器。

编写构造器有一条良好规范:做尽量少的事让对象进入良好状态。如果有可能的话,尽量不要调用类中的任何方法。在基类的构造器中能安全调用的只有基类的 final 方法(这也适用于可被看作是 final 的 private 方法)。这些方法不能被重写,因此不会产生意想不到的结果。你可能无法永远遵循这条规范,但应该朝着它努力。

Java 5 中引入了协变返回类型,这表示派生类的被重写方法可以返回基类方法返回类型的派生类型。

// polymorphism/CovariantReturn.java
class Grain {
    @Override
    public String toString() {
        return "Grain";
    }
}

class Wheat extends Grain {
    @Override
    public String toString() {
        return "Wheat";
    }
}

class Mill {
    Grain process() {
        return new Grain();
    }
}

class WheatMill extends Mill {
    @Override
    Wheat process() {
        return new Wheat();
    }
}

public class CovariantReturn {
    public static void main(String[] args) {
        Mill m = new Mill();
        Grain g = m.process();
        System.out.println(g);
        m = new WheatMill();
        g = m.process();
        System.out.println(g);
    }
}

5、使用继承设计

如果利用已有类创建新类首先选择继承的话,事情会变得莫名的复杂。
更好的方法是首先选择组合,特别是不知道该使用哪种方法时。组合不会强制设计是继承层次结构,而且组合更加灵活,因为可以动态地选择类型(因而选择相应的行为),而继承要求必须在编译时知道确切类型

class Actor {
    public void act() {}
}

class HappyActor extends Actor {
    @Override
    public void act() {
        System.out.println("HappyActor");
    }
}

class SadActor extends Actor {
    @Override
    public void act() {
        System.out.println("SadActor");
    }
}

class Stage {
    private Actor actor = new HappyActor();

    public void change() {
        actor = new SadActor();
    }

    public void performPlay() {
        actor.act();
    }
}

public class Transmogrify {
    public static void main(String[] args) {
        Stage stage = new Stage();
        stage.performPlay();
        stage.change();
        stage.performPlay();
    }
}

输出:

HappyActor
SadActor

Stage 对象中包含了 Actor 引用,该引用被初始化为指向一个 HappyActor 对象,这意味着 performPlay() 会产生一个特殊行为。但是既然引用可以在运行时与其他不同的对象绑定,那么它就可以被替换成对 SadActor 的引用,performPlay() 的行为随之改变。这样你就获得了运行时的动态灵活性(这被称为状态模式)。与之相反,我们不能在运行时决定继承不同的对象,那在编译时就完全确定下来了。

有一条通用准则:使用继承表达行为的差异,使用属性表达状态的变化。
在上个例子中,两者都用到了。通过继承的到的两个不同类在 act() 方法中表达了不同的行为,Stage 通过组合使自己的状态发生变化。这里状态的改变产生了行为的改变。

5.1、替代 vs 扩展

如果只继承而不扩展,那么可以描述为“是一种”
如果继承后要扩展,那么可以描述为“像是一种”,派生类中接口的扩展部分在基类中不存在(不能通过基类访问到这些扩展接口),因此一旦向上转型,就不能通过基类调用这些新方法。

5.2、向下转型与运行时类型信息

由于向上转型(在继承层次中向上移动)会丢失具体的类型信息,那么为了重新获取类型信息,就需要在继承层次中向下移动,使用向下转型。

向上转型永远是安全的,因为基类不会具有比派生类更多的接口。为了解决这个问题,必须得有某种方法确保向下转型是正确的,防止意外转型到一个错误类型,进而发送对象无法接收的消息。这么做是不安全的。

在某些语言中(如 C++),必须执行一个特殊的操作来获得安全的向下转型。
但是在 Java 中,每次转型都会被检查!所以即使只是进行一次普通的加括号形式的类型转换,在运行时这个转换仍会被检查,以确保它的确是希望的那种类型。如果不是,就会得到 ClassCastException (类转型异常)。这种在运行时检查类型的行为称作运行时类型信息。

小结

在本章中,你可以看到,如果不使用数据抽象和继承,就不可能理解甚至创建多态的例子。多态是一种不能单独看待的特性(比如像 switch 语句那样),它只能作为类关系全景中的一部分,与其他特性协同工作。

为了在程序中有效地使用多态乃至面向对象的技术,就必须扩展自己的编程视野,不能只看到单一类中的成员和消息,而要看到类之间的共同特性和它们之间的关系。尽管这需要很大的努力,但是这么做是值得的。它能带来更快的程序开发、更好的代码组织、扩展性更好的程序和更易维护的代码。

但是记住,多态可能被滥用。仔细分析代码以确保多态确实能带来好处。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章