了解23种设计模式之解释器模式

什么是解释器

Interpreter模式 也叫解释器模式,是 行为模式之一,它是一种特殊的设计模式,它建立一个解释器,对于特定的计算机程序设计语言,用来解释预先定义的方法。简单地说, Interpreter模式是一种简单的语法解释器构架。

解释器的定义与特点以及结构

定义:给分析对象定义一个语言,并定义该语言的文法表示,再设计一个解析器来解释语言中的句子。也就是说,用编译语言的方式来分析应用中的实例。这种模式实现了文法表达式处理的接口,该接口解释一个特定的上下文(这里提到的文法句子的概念同编译原理中的描述相同,“文法”指语言的语法规则而“句子”是语言集中的元素。例如,汉语中的句子有很多,“我是中国人”是其中的一个句子,可以用一棵语法树来直观地描述语言中的句子。

文法(参考):

  • 文法是用于描述语言的语法结构的形式规则。没有规矩不成方圆,例如,有些人认为完美爱情的准则是“相互吸引、感情专一、任何一方都没有恋爱经历”,虽然最后一条准则较苛刻,但任何事情都要有规则,语言也一样,不管它是机器语言还是自然语言,都有它自己的文法规则。例如,中文中的“句子”的文法如下。
    〈句子〉::=〈主语〉〈谓语〉〈宾语〉
    〈主语〉::=〈代词〉|〈名词〉
    〈谓语〉::=〈动词〉
    〈宾语〉::=〈代词〉|〈名词〉
    〈代词〉你|我|他
    〈名词〉7大学生I筱霞I英语
    〈动词〉::=是|学习

    :这里的符号“::=”表示“定义为”的意思,用“〈”和“〉”括住的是非终结符,没有括住的是终结符。

句子(参考):

  • 句子是语言的基本单位,是语言集中的一个元素,它由终结符构成,能由“文法”推导出。例如,上述文法可以推出“我是大学生”,所以它是句子。

语法树(参考):

  • 语法树是句子结构的一种树型表示,它代表了句子的推导结果,它有利于理解句子语法结构的层次。图 1 所示是“我是大学生”的语法树。

优点

  • 扩展性好。由于在解释器模式中使用类来表示语言的文法规则,因此可以通过继承等机制来改变或扩展文法。
  • 容易实现。在语法树中的每个表达式节点类都是相似的,所以实现其文法较为容易。

缺点

  • 执行效率较低。解释器模式中通常使用大量的循环和递归调用,当要解释的句子较复杂时,其运行速度很慢,且代码的调试过程也比较麻烦。
  • 会引起类膨胀。解释器模式中的每条规则至少需要定义一个类,当包含的文法规则很多时,类的个数将急剧增加,导致系统难以管理与维护。
  • 可应用的场景比较少。在软件开发中,需要定义语言文法的应用实例非常少,所以这种模式很少被使用到。

解释器模式包含以下主要角色(参考)

  • 抽象表达式(Abstract Expression)角色:定义解释器的接口,约定解释器的解释操作,主要包含解释方法 interpret()。
  • 终结符表达式(Terminal Expression)角色:是抽象表达式的子类,用来实现文法中与终结符相关的操作,文法中的每一个终结符都有一个具体终结表达式与之相对应。
    非终结符表达式(Nonterminal Expression)角色:也是抽象表达式的子类,用来实现文法中与非终结符相关的操作,文法中的每条规则都对应于一个非终结符表达式。
  • 环境(Context)角色:通常包含各个解释器需要的数据或是公共的功能,一般用来传递被所有解释器共享的数据,后面的解释器可以从这里获取这些值。
  • 客户端(Client):主要任务是将需要分析的句子或表达式转换成使用解释器对象描述的抽象语法树,然后调用解释器的解释方法,当然也可以通过环境角色间接访问解释器的解释方法。

解析器结构

  • Context : 解释器上下文环境类,用来存储解析器的上下文环境,比如需要解释的文法等。
  • AbstratctExpression 解释器抽象类。
  • ConcreteExpression 解释器具体实现类。
     解释器的结构

代码实现

下面展示一些 简单实现

//上下文用来保存文法
public class Context {
    private String input;
    private  int output;

    public String getInput() {
        return input;
    }

    public void setInput(String input) {
        this.input = input;
    }

    public int getOutput() {
        return output;
    }

    public void setOutput(int output) {
        this.output = output;
    }
}
//抽象解释器
public abstract class Expression  extends Context{

    public abstract void interpret(Context context);
}

//具体实现递增解释器
public class PlusExpression  extends  Expression{

    @Override
    public void interpret(Context context) {
        //提示信息
        System.out.println("自动递增");
        //获得上下文
        String input = context.getInput();
        //进行 类型转换
        int  intInput  = Integer.parseInt(input);
        //进行递增
        ++intInput;
        //对上下文环境重新赋值,保持最新的值
        context.setInput(String.valueOf(intInput));
        context.setOutput(intInput);
    }


}

// 递减具体实现解释器 代码相同,此处省略

//测试
public class MainClass {
    public static void main(String[] args) {
        Context context = new Context();
        context.setInput("10");
        PlusExpression plusExpression = new PlusExpression();
        plusExpression.interpret(context);
        System.out.println(context.getInput());
    }
}

结果
在这里插入图片描述
示例2:

package interpreterPattern;
import java.util.*;
/*文法规则
  <expression> ::= <city>的<person>
  <city> ::= 韶关|广州
  <person> ::= 老人|妇女|儿童
*/
public class InterpreterPatternDemo
{
    public static void main(String[] args)
    {
        Context bus=new Context();
        bus.freeRide("韶关的老人");
        bus.freeRide("韶关的年轻人");
        bus.freeRide("广州的妇女");
        bus.freeRide("广州的儿童");
        bus.freeRide("山东的儿童");
    }
}
//抽象表达式类
interface Expression
{
    public boolean interpret(String info);
}
//终结符表达式类
class TerminalExpression implements Expression
{
    private Set<String> set= new HashSet<String>();
    public TerminalExpression(String[] data)
    {
        for(int i=0;i<data.length;i++)set.add(data[i]);
    }
    public boolean interpret(String info)
    {
        if(set.contains(info))
        {
            return true;
        }
        return false;
    }
}
//非终结符表达式类
class AndExpression implements Expression
{
    private Expression city=null;    
    private Expression person=null;
    public AndExpression(Expression city,Expression person)
    {
        this.city=city;
        this.person=person;
    }
    public boolean interpret(String info)
    {
        String s[]=info.split("的");       
        return city.interpret(s[0])&&person.interpret(s[1]);
    }
}
//环境类
class Context
{
    private String[] citys={"韶关","广州"};
    private String[] persons={"老人","妇女","儿童"};
    private Expression cityPerson;
    public Context()
    {
        Expression city=new TerminalExpression(citys);
        Expression person=new TerminalExpression(persons);
        cityPerson=new AndExpression(city,person);
    }
    public void freeRide(String info)
    {
        boolean ok=cityPerson.interpret(info);
        if(ok) System.out.println("您是"+info+",您本次乘车免费!");
        else System.out.println(info+",您不是免费人员,本次乘车扣费2元!");   
    }
}

执行结果

解释器模式的应用场景

1.当语言的文法较为简单,且执行效率不是关键问题时。
2.当问题重复出现,且可以用一种简单的语言来进行表达时。
3.当一个语言需要解释执行,并且语言中的句子可以表示为一个抽象语法树的时候,如 XML 文档解释。

注意:解释器模式在实际的软件开发中使用比较少,因为它会引起效率、性能以及维护等问题。如果碰到对表达式的解释,在 Java 中可以用 Expression4J 或 Jep 等来设计。

解释器模式的扩展

参考

在项目开发中,如果要对数据表达式进行分析与计算,无须再用解释器模式进行设计了,Java 提供了以下强大的数学公式解析器:Expression4J、MESP(Math Expression String Parser) 和 Jep 等,它们可以解释一些复杂的文法,功能强大,使用简单。

现在以 Jep 为例来介绍该工具包的使用方法。Jep 是 Java expression parser 的简称,即 Java 表达式分析器,它是一个用来转换和计算数学表达式的 Java 库。通过这个程序库,用户可以以字符串的形式输入一个任意的公式,然后快速地计算出其结果。而且 Jep 支持用户自定义变量、常量和函数,它包括许多常用的数学函数和常量。使用前先下载 Jep 压缩包,解压后,将 jep-x.x.x.jar 文件移到选择的目录中,在 Eclipse 的“Java 构建路径”对话框的“库”选项卡中选择“添加外部 JAR(X)…”,将该 Jep 包添加项目中后即可使用其中的类库。

package interpreterPattern;
import com.singularsys.jep.*;
public class JepDemo{
    public static void main(String[] args) throws JepException{
        Jep jep=new Jep();
        //定义要计算的数据表达式
        String 存款利息="本金*利率*时间";
        //给相关变量赋值
        jep.addVariable("本金",10000);
        jep.addVariable("利率",0.038);
        jep.addVariable("时间",2);
        jep.parse(存款利息);    //解析表达式
        Object accrual=jep.evaluate();    //计算
        System.out.println("存款利息:"+accrual);
    }
}

程序运行结果如下:
程序运行结果

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章