浏览器内部 进程线程 笔记

本文引用于:http://www.dailichun.com/2018/01/21/js_singlethread_eventloop.html

1.浏览器都包含哪些进程?

Browser进程:浏览器的主进程(负责协调、主控),只有一个。作用有

  • 负责浏览器界面显示,与用户交互。如前进,后退等

  • 负责各个页面的管理,创建和销毁其他进程

  • 将Renderer进程得到的内存中的Bitmap,绘制到用户界面上

  • 网络资源的管理,下载等

第三方插件进程:每种类型的插件对应一个进程,仅当使用该插件时才创建

GPU进程:最多一个,用于3D绘制等

浏览器渲染进程(浏览器内核)(Renderer进程,内部是多线程的):默认每个Tab页面一个进程,互不影响。主要作用为页面渲染,脚本执行,事件处理等

2.浏览器多进程的优势

  • 避免单个page crash影响整个浏览器

  • 避免第三方插件crash影响整个浏览器

  • 多进程充分利用多核优势

  • 方便使用沙盒模型隔离插件等进程,提高浏览器稳定性

3.重点是浏览器内核(渲染进程)

  1. GUI渲染线程

    • 负责渲染浏览器界面,解析HTML,CSS,构建DOM树和RenderObject树,布局和绘制等。

    • 当界面需要重绘(Repaint)或由于某种操作引发回流(reflow)时,该线程就会执行

    • 注意,GUI渲染线程与JS引擎线程是互斥的,当JS引擎执行时GUI线程会被挂起(相当于被冻结了),GUI更新会被保存在一个队列中等到JS引擎空闲时立即被执行。

  2. JS引擎线程

    • 也称为JS内核,负责处理Javascript脚本程序。(例如V8引擎)

    • JS引擎线程负责解析Javascript脚本,运行代码。

    • JS引擎一直等待着任务队列中任务的到来,然后加以处理,一个Tab页(renderer进程)中无论什么时候都只有一个JS线程在运行JS程序

    • 同样注意,GUI渲染线程与JS引擎线程是互斥的,所以如果JS执行的时间过长,这样就会造成页面的渲染不连贯,导致页面渲染加载阻塞。

  3. 事件触发线程

    • 归属于浏览器而不是JS引擎,用来控制事件循环(可以理解,JS引擎自己都忙不过来,需要浏览器另开线程协助)

    • 当JS引擎执行代码块如setTimeOut时(也可来自浏览器内核的其他线程,如鼠标点击、AJAX异步请求等),会将对应任务添加到事件线程中

    • 当对应的事件符合触发条件被触发时,该线程会把事件添加到待处理队列的队尾,等待JS引擎的处理

    • 注意,由于JS的单线程关系,所以这些待处理队列中的事件都得排队等待JS引擎处理(当JS引擎空闲时才会去执行)

  4. 定时触发器线程

    • 传说中的setIntervalsetTimeout所在线程

    • 浏览器定时计数器并不是由JavaScript引擎计数的,(因为JavaScript引擎是单线程的, 如果处于阻塞线程状态就会影响记计时的准确)

    • 因此通过单独线程来计时并触发定时(计时完毕后,添加到事件队列中,等待JS引擎空闲后执行)

    • 注意,W3C在HTML标准中规定,规定要求setTimeout中低于4ms的时间间隔算为4ms。

  5. 异步http请求线程

    • 在XMLHttpRequest在连接后是通过浏览器新开一个线程请求

    • 将检测到状态变更时,如果设置有回调函数,异步线程就产生状态变更事件,将这个回调再放入事件队列中。再由JavaScript引擎执行。

4.简单梳理下浏览器渲染流程

本来是直接计划开始谈JS运行机制的,但想了想,既然上述都一直在谈浏览器,直接跳到JS可能再突兀,因此,中间再补充下浏览器的渲染流程(简单版本)

为了简化理解,前期工作直接省略成:(要展开的或完全可以写另一篇超长文)

浏览器器内核拿到内容后,渲染大概可以划分成以下几个步骤:

  1. 解析html建立dom树

  2. 解析css构建render树(将CSS代码解析成树形的数据结构,然后结合DOM合并成render树)

  3. 布局render树(Layout/reflow),负责各元素尺寸、位置的计算

  4. 绘制render树(paint),绘制页面像素信息

  5. 浏览器会将各层的信息发送给GPU,GPU会将各层合成(composite),显示在屏幕上。

所有详细步骤都已经略去,渲染完毕后就是load事件了,之后就是自己的JS逻辑处理了

既然略去了一些详细的步骤,那么就提一些可能需要注意的细节把。

这里重绘参考来源中的一张图:(参考来源第一篇)

5.从Event Loop谈JS的运行机制

到此时,已经是属于浏览器页面初次渲染完毕后的事情,JS引擎的一些运行机制分析。

注意,这里不谈可执行上下文VOscop chain等概念(这些完全可以整理成另一篇文章了),这里主要是结合Event Loop来谈JS代码是如何执行的。

读这部分的前提是已经知道了JS引擎是单线程,而且这里会用到上文中的几个概念:(如果不是很理解,可以回头温习)

  • JS引擎线程

  • 事件触发线程

  • 定时触发器线程

然后再理解一个概念:

  • JS分为同步任务和异步任务

  • 同步任务都在主线程上执行,形成一个执行栈

  • 主线程之外,事件触发线程管理着一个任务队列,只要异步任务有了运行结果,就在任务队列之中放置一个事件。

  • 一旦执行栈中的所有同步任务执行完毕(此时JS引擎空闲),系统就会读取任务队列,将可运行的异步任务添加到可执行栈中,开始执行。

看图

看到这里,应该就可以理解了:为什么有时候setTimeout推入的事件不能准时执行?因为可能在它推入到事件列表时,主线程还不空闲,正在执行其它代码, 所以自然有误差。

事件循环机制进一步补充

这里就直接引用一张图片来协助理解:(参考自Philip Roberts的演讲《Help, I’m stuck in an event-loop》)

上图大致描述就是:

  • 主线程运行时会产生执行栈, 栈中的代码调用某些api时,它们会在事件队列中添加各种事件(当满足触发条件后,如ajax请求完毕)

  • 而栈中的代码执行完毕,就会读取事件队列中的事件,去执行那些回调

  • 如此循环

  • 注意,总是要等待栈中的代码执行完毕后才会去读取事件队列中的事件

6.单独说说定时器

上述事件循环机制的核心是:JS引擎线程和事件触发线程

但事件上,里面还有一些隐藏细节,譬如调用setTimeout后,是如何等待特定时间后才添加到事件队列中的?

是JS引擎检测的么?当然不是了。它是由定时器线程控制(因为JS引擎自己都忙不过来,根本无暇分身)

为什么要单独的定时器线程?因为JavaScript引擎是单线程的, 如果处于阻塞线程状态就会影响记计时的准确,因此很有必要单独开一个线程用来计时。

什么时候会用到定时器线程?当使用setTimeoutsetInterval,它需要定时器线程计时,计时完成后就会将特定的事件推入事件队列中。

譬如:

这段代码的作用是当1000毫秒计时完毕后(由定时器线程计时),将回调函数推入事件队列中,等待主线程执行

这段代码的效果是最快的时间内将回调函数推入事件队列中,等待主线程执行

注意:

  • 执行结果是:先beginhello!

  • 虽然代码的本意是0毫秒后就推入事件队列,但是W3C在HTML标准中规定,规定要求setTimeout中低于4ms的时间间隔算为4ms。 (不过也有一说是不同浏览器有不同的最小时间设定)

  • 就算不等待4ms,就算假设0毫秒就推入事件队列,也会先执行begin(因为只有可执行栈内空了后才会主动读取事件队列)

 

7.setTimeout而不是setInterval

用setTimeout模拟定期计时和直接用setInterval是有区别的。

因为每次setTimeout计时到后就会去执行,然后执行一段时间后才会继续setTimeout,中间就多了误差 (误差多少与代码执行时间有关)

而setInterval则是每次都精确的隔一段时间推入一个事件 (但是,事件的实际执行时间不一定就准确,还有可能是这个事件还没执行完毕,下一个事件就来了)

而且setInterval有一些比较致命的问题就是:

  • 累计效应(上面提到的),如果setInterval代码在(setInterval)再次添加到队列之前还没有完成执行, 就会导致定时器代码连续运行好几次,而之间没有间隔。 就算正常间隔执行,多个setInterval的代码执行时间可能会比预期小(因为代码执行需要一定时间)

  • 而且把浏览器最小化显示等操作时,setInterval并不是不执行程序, 它会把setInterval的回调函数放在队列中,等浏览器窗口再次打开时,一瞬间全部执行时

所以,鉴于这么多但问题,目前一般认为的最佳方案是:用setTimeout模拟setInterval,或者特殊场合直接用requestAnimationFrame

补充:JS高程中有提到,JS引擎会对setInterval进行优化,如果当前事件队列中有setInterval的回调,不会重复添加。不过,仍然是有很多问题。。。

7.事件循环进阶:macrotask与microtask

这段参考了参考来源中的第2篇文章(英文版的),(加了下自己的理解重新描述了下), 强烈推荐有英文基础的同学直接观看原文,作者描述的很清晰,示例也很不错,如下:

https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/

上文中将JS事件循环机制梳理了一遍,在ES5的情况是够用了,但是在ES6盛行的现在,仍然会遇到一些问题,譬如下面这题:

嗯哼,它的正确执行顺序是这样子的:

为什么呢?因为Promise里有了一个一个新的概念:microtask

或者,进一步,JS中分为两种任务类型:macrotaskmicrotask,在ECMAScript中,microtask称为jobs,macrotask可称为task

它们的定义?区别?简单点可以按如下理解:

  • macrotask(又称之为宏任务),可以理解是每次执行栈执行的代码就是一个宏任务(包括每次从事件队列中获取一个事件回调并放到执行栈中执行)

    • 每一个task会从头到尾将这个任务执行完毕,不会执行其它

    • 浏览器为了能够使得JS内部task与DOM任务能够有序的执行,会在一个task执行结束后,在下一个 task 执行开始前,对页面进行重新渲染 (task->渲染->task->...

  • microtask(又称为微任务),可以理解是在当前 task 执行结束后立即执行的任务

    • 也就是说,在当前task任务后,下一个task之前,在渲染之前

    • 所以它的响应速度相比setTimeout(setTimeout是task)会更快,因为无需等渲染

    • 也就是说,在某一个macrotask执行完后,就会将在它执行期间产生的所有microtask都执行完毕(在渲染前)

分别很么样的场景会形成macrotask和microtask呢?

  • macrotask:主代码块,setTimeout,setInterval等(可以看到,事件队列中的每一个事件都是一个macrotask)

  • microtask:Promise,process.nextTick等

补充:在node环境下,process.nextTick的优先级高于Promise,也就是可以简单理解为:在宏任务结束后会先执行微任务队列中的nextTickQueue部分,然后才会执行微任务中的Promise部分。

另外,setImmediate则是规定:在下一次Event Loop(宏任务)时触发(所以它是属于优先级较高的宏任务), (Node.js文档中称,setImmediate指定的回调函数,总是排在setTimeout前面), 所以setImmediate如果嵌套的话,是需要经过多个Loop才能完成的, 而不会像process.nextTick一样没完没了。

参考:https://segmentfault.com/q/1010000011914016

再根据线程来理解下:

  • macrotask中的事件都是放在一个事件队列中的,而这个队列由事件触发线程维护

  • microtask中的所有微任务都是添加到微任务队列(Job Queues)中,等待当前macrotask执行完毕后执行,而这个队列由JS引擎线程维护 (这点由自己理解+推测得出,因为它是在主线程下无缝执行的)

所以,总结下运行机制:

  • 执行一个宏任务(栈中没有就从事件队列中获取)

  • 执行过程中如果遇到微任务,就将它添加到微任务的任务队列中

  • 宏任务执行完毕后,立即执行当前微任务队列中的所有微任务(依次执行)

  • 当前宏任务执行完毕,开始检查渲染,然后GUI线程接管渲染

  • 渲染完毕后,JS线程继续接管,开始下一个宏任务(从事件队列中获取)

另外,请注意下Promisepolyfill与官方版本的区别:

  • 官方版本中,是标准的microtask形式

  • polyfill,一般都是通过setTimeout模拟的,所以是macrotask形式

  • 请特别注意这两点区别

注意,有一些浏览器执行结果不一样(因为它们可能把microtask当成macrotask来执行了), 但是为了简单,这里不描述一些不标准的浏览器下的场景(但记住,有些浏览器可能并不标准)

20180126补充:使用MutationObserver实现microtask

MutationObserver可以用来实现microtask (它属于microtask,优先级小于Promise, 一般是Promise不支持时才会这样做)

它是HTML5中的新特性,作用是:监听一个DOM变动, 当DOM对象树发生任何变动时,Mutation Observer会得到通知

像以前的Vue源码中就是利用它来模拟nextTick的, 具体原理是,创建一个TextNode并监听内容变化, 然后要nextTick的时候去改一下这个节点的文本内容, 如下:(Vue的源码,未修改)

不过,现在的Vue(2.5+)的nextTick实现移除了MutationObserver的方式(据说是兼容性原因), 取而代之的是使用MessageChannel (当然,默认情况仍然是Promise,不支持才兼容的)。

MessageChannel属于宏任务,优先级是:MessageChannel->setTimeout, 所以Vue(2.5+)内部的nextTick与2.4及之前的实现是不一样的,需要注意下。

这里不展开,可以看下https://juejin.im/post/5a1af88f5188254a701ec230

 

 

 

 

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章