強化學習學習總結(四)——DQN

一、def

        如果我們的state與action很多,就如打磚塊遊戲,每個時間不同的磚塊排列跟剩餘都是不同的state,就會導致維度災難。使用神經網絡來 估算 這個 state 的值, 這樣就不需要一張表了.

更新方式

二、算法更新

1、初始化replay memory D 容量爲N 
2、用一個深度神經網絡作爲Q值網絡,初始化權重參數 
3、設定遊戲片段總數M 
4、初始化網絡輸入,大小爲84*84*4,並且計算網絡輸出 
5、以概率ϵ隨機選擇動作at或者通過網絡輸出的Q(max)值選擇動作at 
6、得到執行at後的獎勵rt和下一個網絡的輸入 
7、根據當前的值計算下一時刻網絡的輸出 
8、將四個參數作爲此刻的狀態一起存入到D中(D中存放着N個時刻的狀態) 
9、隨機從D中取出minibatch個狀態 (隨即採樣) 
10、計算每一個狀態的目標值(通過執行at後的reward來更新Q值作爲目標值) 
11、通過SGD更新weight

 

整個算法乍看起來很複雜, 不過我們拆分一下, 就變簡單了. 也就是個 Q learning 主框架上加了些裝飾.

這些裝飾包括:

  • 記憶庫 (用於重複學習)
  • 神經網絡計算 Q 值
  • 暫時凍結 q_target (現實)參數 (切斷相關性)
rom maze_env import Maze
from RL_brain import DeepQNetwork

def run_maze():
    step = 0    # 用來控制什麼時候學習
    for episode in range(300):
        # 初始化環境
        observation = env.reset()

        while True:
            # 刷新環境
            env.render()

            # action
            action = RL.choose_action(observation)
            # 獲得 state, reward, 是否終止
            observation_, reward, done = env.step(action)
            # DQN 存儲記憶
            RL.store_transition(observation, action, reward, observation_)
            # 控制學習起始時間和頻率 (先累積一些記憶再開始學習)
            if (step > 200) and (step % 5 == 0):
                RL.learn()
            #  state_ → state
            observation = observation_

            # 如果終止, 就跳出循環
            if done:
                break
            step += 1   # 總步數

    # end of game
    print('game over')
    env.destroy()


if __name__ == "__main__":
    env = Maze()
    RL = DeepQNetwork(env.n_actions, env.n_features,
                      learning_rate=0.01,
                      reward_decay=0.9,
                      e_greedy=0.9,
                      replace_target_iter=200,  # 每 200 步替換一次 target_net 的參數
                      memory_size=2000, # 記憶上限
                      # output_graph=True   # 是否輸出 tensorboard 文件
                      )
    env.after(100, run_maze)
    env.mainloop()
    RL.plot_cost()  # 觀看神經網絡的誤差曲線

三、神經網絡

暫時凍結q_target參數:方式是搭建兩個神經網絡, (這兩個神經網絡結構是完全一樣的, 只是裏面的參數不一樣.)

target_net 用於預測 q_target 值, 他不會及時更新參數. 不可被訓練

eval_net 用於預測 q_eval, 這個神經網絡擁有最新的神經網絡參數. 可被訓練

 

class DeepQNetwork:
    def _build_net(self):
        # -------------- 創建 eval 神經網絡, 及時提升參數 --------------
        self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s')  # 用來接收 observation
        self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # 用來接收 q_target 的值, 這個之後會通過計算得到
        with tf.variable_scope('eval_net'):
            # c_names(collections_names) 是在更新 target_net 參數時會用到
            c_names, n_l1, w_initializer, b_initializer = \
                ['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \
                tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1)  # config of layers

            # eval_net 的第一層. collections 是在更新 target_net 參數時會用到
            with tf.variable_scope('l1'):
                w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
                b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)

            # eval_net 的第二層. collections 是在更新 target_net 參數時會用到
            with tf.variable_scope('l2'):
                w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
                b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
                self.q_eval = tf.matmul(l1, w2) + b2

        with tf.variable_scope('loss'): # 求誤差
            self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval))
        with tf.variable_scope('train'):    # 梯度下降
            self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)

        # ---------------- 創建 target 神經網絡, 提供 target Q ---------------------
        self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_')    # 接收下個 observation
        with tf.variable_scope('target_net'):
            # c_names(collections_names) 是在更新 target_net 參數時會用到
            c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]

            # target_net 的第一層. collections 是在更新 target_net 參數時會用到
            with tf.variable_scope('l1'):
                w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
                b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
                l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)

            # target_net 的第二層. collections 是在更新 target_net 參數時會用到
            with tf.variable_scope('l2'):
                w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
                b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
                self.q_next = tf.matmul(l1, w2) + b2

 

四、思維決策 

1.代碼構架

class DeepQNetwork:
    # 創建神經網絡
    def _build_net(self):

    # 初始值
    def __init__(self):

    # 存儲記憶
    def store_transition(self, s, a, r, s_):

    # 選行爲
    def choose_action(self, observation):

    # 學習
    def learn(self):

    # 看看學習效果 (可選)
    def plot_cost(self):

2.分別實現

(1)創建神經網絡

(2)初始值
 

    def __init__(
            self,
            n_actions,
            n_features,                     #observation數量:如長寬高等
            learning_rate=0.01,
            reward_decay=0.9,
            e_greedy=0.9,
            replace_target_iter=300,        #更新target所間隔的步數
            memory_size=500,                #記憶庫記憶容量:記憶上限
            batch_size=32,                  #每次更新所取得記憶數量
            e_greedy_increment=None,        #擴大貪婪率,縮小隨機範圍,減少探索次數
            output_graph=False,              #出圖
    ):
        self.n_actions = n_actions
        self.n_features = n_features
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon_max = e_greedy
        self.replace_target_iter = replace_target_iter
        self.memory_size = memory_size
        self.batch_size = batch_size
        self.epsilon_increment = e_greedy_increment
        self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max

        # 記錄學習次數 (用於判斷是否更換 target_net 參數)
        self.learn_step_counter = 0

        # 初始化全 0 記憶 [s, a, r, s_]
        self.memory = np.zeros((self.memory_size, n_features * 2 + 2))      #記憶容量  observation數量+action+reward

        # 創建 [target_net, evaluate_net]
        self._build_net()

        # 替換 target net 的參數
        t_params = tf.get_collection('target_net_params')
        e_params = tf.get_collection('eval_net_params')
        self.replace_target_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]  # 更新 target_net 參數

        self.sess = tf.Session()

        if output_graph:
            # $ tensorboard --logdir=logs
            # tf.train.SummaryWriter soon be deprecated, use following
            tf.summary.FileWriter("logs/", self.sess.graph)

        self.sess.run(tf.global_variables_initializer())                #初始化所有參數
        self.cost_his = []                                               #記錄誤差

(3)存儲記憶

DQN 的精髓部分之一: 記錄下所有經歷過的步, 這些步可以進行反覆的學習, 所以是一種 off-policy 方法。

 def store_transition(self, s, a, r, s_):
        if not hasattr(self, 'memory_counter'):
            self.memory_counter = 0

        # 記錄一條 [s, a, r, s_] 記錄
        transition = np.hstack((s, [a, r], s_))
        # 總 memory 大小是固定的, 如果超出總大小, 舊 memory 就被新 memory 迭代更新
        index = self.memory_counter % self.memory_size
        self.memory[index, :] = transition # 替換過程

        self.memory_counter += 1

(4)選行爲

    def choose_action(self, observation):
        # to have batch dimension when feed into tf placeholder
        observation = observation[np.newaxis, :]        #轉爲2維:統一 observation 的 shape (1, size_of_observation)

        if np.random.uniform() < self.epsilon:
            # forward feed the observation and get q value for every actions
            actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
            action = np.argmax(actions_value)
        else:
            action = np.random.randint(0, self.n_actions)
        return action

(5)最重要的一步, 就是在 DeepQNetwork 中, 學習, 更新參數的步驟. 這裏涉及了 target_net 和 eval_net 的交互使用.

    def learn(self):
        # 每隔replace_target_iter才更新一次target_net
        if self.learn_step_counter % self.replace_target_iter == 0:
            self.sess.run(self.replace_target_op)
            print('\ntarget_params_replaced\n')

        # 抽取記憶樣本
        if self.memory_counter > self.memory_size:
            sample_index = np.random.choice(self.memory_size, size=self.batch_size)
        else:
            sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
        batch_memory = self.memory[sample_index, :]

        #神經網絡輸出值(輸入爲memory存儲數據)
        q_next, q_eval = self.sess.run(
            [self.q_next, self.q_eval],
            feed_dict={
                self.s_: batch_memory[:, -self.n_features:],  # 存儲的後n個features
                self.s: batch_memory[:, :self.n_features],  # 存儲的前n個features
            })

        # 將target(現實)值改變爲與eval(估計)值位置對應
        # 根據 memory 當中的具體 action 位置來修改 q_target 對應 action 上的值:
        q_target = q_eval.copy()
        batch_index = np.arange(self.batch_size, dtype=np.int32)
        eval_act_index = batch_memory[:, self.n_features].astype(int)
        reward = batch_memory[:, self.n_features + 1]
        q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1)

        """
        For example in this batch I have 2 samples and 3 actions:
        q_eval =
        [[1, 2, 3],
         [4, 5, 6]]
        q_target = q_eval =
        [[1, 2, 3],
         [4, 5, 6]]
        Then change q_target with the real q_target value w.r.t the q_eval's action.
        For example in:
            sample 0, I took action 0, and the max q_target value is -1;
            sample 1, I took action 2, and the max q_target value is -2:
        q_target =
        [[-1, 2, 3],
         [4, 5, -2]]
        So the (q_target - q_eval) becomes:
        [[(-1)-(1), 0, 0],
         [0, 0, (-2)-(6)]]
        We then backpropagate this error w.r.t the corresponding action to network,
        leave other action as error=0 cause we didn't choose it.
        """

        # train eval network
        _, self.cost = self.sess.run([self._train_op, self.loss],
                                     feed_dict={self.s: batch_memory[:, :self.n_features],
                                                self.q_target: q_target})
        self.cost_his.append(self.cost)

        # increasing epsilon
        self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max

        self.learn_step_counter += 1

(6)學習效果圖

def plot_cost(self):
        import matplotlib.pyplot as plt
        plt.plot(np.arange(len(self.cost_his)), self.cost_his)
        plt.ylabel('Cost')
        plt.xlabel('training steps')
        plt.show()

 曲線解釋:通過探索收集數據,不斷有新的數據,所以可能有升高的cost。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章