JVM — 虚拟机垃圾收集器(四)

垃圾收集器

JVM堆空间图示:
在这里插入图片描述
从上图可以看出堆内存的分为新生代、老年代和永久代。新生代又被进一步分为:Eden 区+Survior1 区+Survior2 区。值得注意的是,在 JDK 1.8中移除整个永久代,取而代之的是一个叫元空间(Metaspace)的区域(永久代使用的是JVM的堆内存空间,而元空间使用的是物理内存,直接受到本机的物理内存限制)。

1、 新生代收集器

1.1、Serial收集器

Serial 收集器是最基本、发展历史最悠久的收集器,曾经(在JDK1.3.1之前)是虚拟机新生代收集的唯一选择,使用复制算法。这个收集器是一个单线程的收集器,但它的”单线程“的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。”Stop The World“这项工作是由虚拟机在后台自动发起和自动完成的,在用户不可见的情况下把用户正常工作的线程全部停掉,这对很多应用来说都是难以接受的。
Serial收集器依然是虚拟机运行在Client模式下的默认新生代收集器。它有着优于其他收集器的地方:简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。所以,Serial收集器对于运行在Client模式下的虚拟机来说是一个很好的选择。
总结:

  • 针对新生代
  • 串行
  • 复制算法
  • 单线程一方面意味着它只会使用一个CPU或一条线程去完成垃圾收集工作,
  • 另一方面也意味着在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束为止,这个过程也称为 Stop The world。
  • 后者意味着,在用户不可见的情况下要把用户正常工作的线程全部停掉,这显然对很多应用是难以接受的。

下图示意了Serial收集器的运行过程:
在这里插入图片描述

1.2、ParNew收集器

ParNew收集器就是Serial收集器的多线程版本,它也是一个新生代收集器。除了使用多线程进行垃圾收集外,其余行为包括Serial收集器可用的所有控制参数、收集算法(复制算法)、Stop The World、对象分配规则、回收策略等与Serial收集器完全相同,也同样使用复制算法,两者共用了相当多的代码。

ParNew收集器除了使用多线程收集外,其他与Serial收集器相比并无太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关的重要原因是,除了Serial收集器外,目前只有它能和CMS收集器(Concurrent Mark Sweep)配合工作,CMS收集器是HotSpot虚拟机中第一款真正意义上的并发(Concurrent)收集器,它第一次实现了让垃圾收集线程与用户线程(基本上)同时工作。
ParNew 收集器在单CPU的环境中绝对不会有比Serial收集器有更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越。在多CPU环境下,随着CPU的数量增加,它对于GC时系统资源的有效利用是很有好处的。
总结:

  • 针对新生代
  • 复制算法
  • 串行
  • 多线程
  • GC时需要暂停所有用户线程,直到GC结束
  • Serial多线程版本,其他特点与Serial相同

ParNew收集器的工作过程如下图:
在这里插入图片描述
注意:从ParNew收集器开始,后面还会接触到几款并发和并行的收集器。并发和并行都是并发编程中的概念,在垃圾收集器的上下文语境中,它们可以解释如下:

  • 并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
  • 并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。

1.3、 Parallel Scanvenge收集器

Parallel Scavenge收集器是一个新生代收集器,它也是使用复制算法的收集器,又是并行的多线程收集器。
Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量 = 运行用户代码时间 /(运行用户代码时间 + 垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。
Parallel Scavenge收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的 -XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的**-XX:GCTimeRatio**参数。
由于与吞吐量关系密切,Parallel Scavenge收集器也经常称为“吞吐量优先”收集器。除上述两个参数之外,Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得关注。这是一个开关参数,当这个参数打开之后,就不需要手工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象年龄(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略(GC Ergonomics)。自适应调节策略是Parallel Scavenge收集器与ParNew收集器的一个重要区别。
总结:

  • 针对新生代,Server模式下的默认垃圾收集器
  • 复制算法
  • 并行
  • 多线程
  • 高吞吐量为目标,自适应调节策略

2、老年代收集器

2.1、Serial Old收集器

Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,它主要还有两大用途:一种用途是在JDK1.5以及之前的版本中与Parallel Scavenge收集器搭配使用,另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。Serial Old收集器的工作过程如图所示:
在这里插入图片描述
总结:

  • Serial 新生代收集器采用的是复制算法,Serial Old 老年代采用的是标记 - 整理算法
  • Serial Old是Serial的老年代版本,除了采用标记-整理算法,其他与Serial相同

2.2、Parallel Old收集器

Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PS MarkSweep)收集器外别无选择。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,由於单线程的老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNew加CMS的组合“给力”。
  直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合,在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器。
Parallel Old收集器的工作过程如图所示:
  在这里插入图片描述
总结:

  • Parallel Old是Parallel Scavenge的老年代版本
  • Parallel Old 老年代采用的是标记 - 整理算法,其他特点与Parallel Scavenge相同
  • 在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge加Parallel Old收集器组合
  • JDK1.6及之后用来代替老年代的Serial Old收集器;特别是在Server模式,多CPU的情况下;
  • -XX:+UseParallelOldGC:指定使用Parallel Old收集器;

2.3、CMS(Concurrent Mark Sweep)收集器

CMS是HotSpot在JDK5推出的第一款真正意义上的并发(Concurrent)收集器,第一次实现了让垃圾收集线程与用户线程(基本上)同时工作;命名中用的是concurrent,而不是parallel,说明这个收集器是有与工作执行并发的能力的。MS则说明算法用的是Mark Sweep算法。它关注的是垃圾回收最短的停顿时间(低停顿),在老年代并不频繁GC的场景下,是比较适用的。CMS是一种以获取最短回收停顿时间为目标的收集器。在重视响应速度和用户体验的应用中,CMS应用很多。

CMS收集器是基于“标记-清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤,包括:

1. 初始标记(CMS initial mark)

  • 单线程执行
  • 需要“Stop The World”
  • 但仅仅把GC Roots的直接关联可达的对象给标记一下,由于直接关联对象比较小,所以这里的速度非常快

2. 并发标记(CMS concurrent mark)

  • 进行GC Roots Tracing的过程,从刚才产生的集合中标记出存活对象;(也就是从GC Roots 开始对堆进行可达性分析,找出存活对象。)
  • 耗时较长,但应用程序也在运行;
  • 并不能保证可以标记出所有的存活对象;

3. 重新标记(CMS remark)

  • 最终标记和CMS的重新标记阶段一样,也是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,
  • 这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短,
  • 也需要“Stop The World”。

4. 并发清除(CMS concurrent sweep)

  • 并发清除之前所标记的垃圾。
  • 其他用户线程仍可以工作,不需要停顿。

CMS GC过程分四步完成:
在这里插入图片描述
参数:

  1. -XX:+UseConcMarkSweepGC:使用CMS收集器
  2. -XX:+ UseCMSCompactAtFullCollection:Full GC后,进行一次碎片整理;整理过程是独占的,会引起停顿时间变长
  3. -XX:+CMSFullGCsBeforeCompaction:设置进行几次Full GC后,进行一次碎片整理
  4. -XX:ParallelCMSThreads:设定CMS的线程数量(一般情况约等于可用CPU数量)

缺点:
1、对CPU资源非常敏感
CMS收集器对CPU资源非常敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。CMS默认启动的回收线程数是(CPU数量+3)/4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大,如果本来CPU负载就比较大,还分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然降低了50%。

2、浮动垃圾(Floating Garbage)
CMS收集器无法处理浮动垃圾,可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。
如果CMS运行期间预留的内存无法满足程序需要,就会出现一次“Concurrent Mode Failure”失败,这时虚拟机将启动后备预案:临时启用Serial Old收集器来重新进行老年代的垃圾收集,这样会导致另一次Full GC的产生。这样停顿时间就更长了,代价会更大,所以 "-XX:CMSInitiatingOccupancyFraction"不能设置得太大。
3、产生大量内存碎片
还有最后一个缺点,CMS是一款基于“标记-清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次Full GC。为了解决这个问题,CMS收集器提供了一个-XX:+UseCMSCompactAtFullCollection开关参数(默认就是开启的),用于在CMS收集器顶不住要进行FullGC时开启内存碎片的合并整理过程,内存整理的过程是无法并发的,空间碎片问题没有了,但停顿时间不得不变长。虚拟机设计者还提供了另外一个参数-XX:CMSFullGCsBeforeCompaction,这个参数是用于设置执行多次不压缩的Full GC后,跟着来一次带压缩的(默认值为0,表示每次进入Full GC时都进行碎片整理)。

3、整堆收集器

3.1、G1收集器

G1(Garbage-First)是JDK7-u4才推出商用的收集器;G1(Garbage - First)名称的由来是G1跟踪各个Region里面的垃圾堆的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region。注意:G1与前面的垃圾收集器有很大不同,它把新生代、老年代的划分取消了!这样我们再也不用单独的空间对每个代进行设置了,不用担心每个代内存是否足够。
特点:

  • 并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。
  • 分代收集:与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式取处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。
  • 空间整合:与CMS的“标记-清理”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。
  • 可预测的停顿:这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,可以有计划地避免在Java堆的进行全区域的垃圾收集;能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。

G1算法将堆划分为若干个区域(Region),它仍然属于分代收集器。不过,这些区域的一部分包含新生代,新生代的垃圾收集依然采用暂停所有应用线程的方式,将存活对象拷贝到老年代或者Survivor空间。老年代也分成很多区域,G1收集器通过将对象从一个区域复制到另外一个区域,完成了清理工作。这就意味着,在正常的处理过程中,G1完成了堆的压缩(至少是部分堆的压缩),这样也就不会有CMS内存碎片问题的存在了。
在这里插入图片描述
在G1中,还有一种特殊的区域,叫Humongous区域。 如果一个对象占用的空间超过了分区容量50%以上,G1收集器就认为这是一个巨型对象。这些巨型对象,默认直接会被分配在年老代,但是如果它是一个短期存在的巨型对象,就会对垃圾收集器造成负面影响。为了解决这个问题,G1划分了一个Humongous区,它用来专门存放巨型对象。如果一个H区装不下一个巨型对象,那么G1会寻找连续的H分区来存储。为了能找到连续的H区,有时候不得不启动Full GC。在java 8中,持久代也移动到了普通的堆内存空间中,改为元空间。

使用场景:

如果你的应用追求低停顿,那G1现在已经可以作为一个可尝试选择,如果你的应用追求吞吐量,那G1并不会为你带来什么特别的好处。

  • 面向服务端应用,针对具有大内存、多处理器的机器;最主要的应用是为需要低GC延迟,并具有大堆的应用程序提供解决方案;
    如:在堆大小约6GB或更大时,可预测的暂停时间可以低于0.5秒;
  • 用来替换掉JDK1.5的CMS收集器;

G1收集器运作过程:
在这里插入图片描述
1、初始标记(Initial Marking)
初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,需要“Stop The World”。
2、并发标记(Concurrent Marking)
进行GC Roots Tracing的过程,从刚才产生的集合中标记出存活对象;(也就是从GC Roots 开始对堆进行可达性分析,找出存活对象。)耗时较长,但应用程序也在运行;
并不能保证可以标记出所有的存活对象。
3、最终标记(Final Marking)
最终标记和CMS的重新标记阶段一样,也是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短,也需要“Stop The World”。
4、筛选回收(Live Data Counting and Evacuation)
首先排序各个Region的回收价值和成本;然后根据用户期望的GC停顿时间来制定回收计划;最后按计划回收一些价值高的Region中垃圾对象;回收时采用"复制"算法,从一个或多个Region复制存活对象到堆上的另一个空的Region,并且在此过程中压缩和释放内存;
可以并发进行,降低停顿时间,并增加吞吐量;
参数

  • “-XX:+UseG1GC”:指定使用G1收集器;
  • “-XX:InitiatingHeapOccupancyPercent”:当整个Java堆的占用率达到参数值时,开始并发标记阶段;默认为45;
  • “-XX:MaxGCPauseMillis”:为G1设置暂停时间目标,默认值为200毫秒;
  • “-XX:G1HeapRegionSize”:设置每个Region大小,范围1MB到32MB;目标是在最小Java堆时可以拥有约2048个;

4、ZGC收集器

在JDK 11当中,加入了实验性质的ZGC。它的回收耗时平均不到2毫秒。它是一款低停顿高并发的收集器。ZGC几乎在所有地方并发执行的,除了初始标记的是STW的。所以停顿时间几乎就耗费在初始标记上,这部分的实际是非常少的。那么其他阶段是怎么做到可以并发执行的呢?ZGC主要新增了两项技术,一个是着色指针Colored Pointer,另一个是读屏障Load Barrier。ZGC 是一个并发、基于区域(region)、增量式压缩的收集器。Stop-The-World 阶段只会在根对象扫描(root scanning)阶段发生,这样的话 GC 暂停时间并不会随着堆和存活对象的数量而增加。
ZGC 的设计目标

  1. TB 级别的堆内存管理;
  2. 最大 GC Pause 不高于 10ms;
  3. 最大的吞吐率(Throughput)损耗不高于 15%;
  4. 关键点:GC Pause 不会随着 堆大小的增加 而增大。

ZGC 中关键技术

  • 加载屏障(Load barriers)技术;
  • 有色对象指针(Colored pointers);
  • 单一分代内存管理(这一点很有意思);
  • 基于区域的内存管理;
  • 部分内存压缩;
  • 即时内存复用。

并行化处理阶段

  • 标记(Marking);
  • 重定位(Relocation)/压缩(Compaction);
  • 重新分配集的选择(Relocation set selection);
  • 引用处理(Reference processing);
  • 弱引用的清理(WeakRefs Cleaning);
  • 字符串常量池(String Table)和符号表(Symbol Table)的清理;
  • 类卸载(Class unloading);

着色指针Colored Pointer
ZGC利用指针的64位中的几位表示Finalizable、Remapped、Marked1、Marked0(ZGC仅支持64位平台),以标记该指向内存的存储状态。相当于在对象的指针上标注了对象的信息。注意,这里的指针相当于Java术语当中的引用。
在这个被指向的内存发生变化的时候(内存在Compact被移动时),颜色就会发生变化。
在G1的时候就说到过,Compact阶段是需要STW,否则会影响用户线程执行。那么怎么解决这个问题呢?

读屏障Load Barrier
由于着色指针的存在,在程序运行时访问对象的时候,可以轻易知道对象在内存的存储状态(通过指针访问对象),若请求读的内存在被着色了,那么则会触发读屏障。读屏障会更新指针再返回结果,此过程有一定的耗费,从而达到与用户线程并发的效果。

与标记对象的传统算法相比,ZGC在指针上做标记,在访问指针时加入Load Barrier(读屏障),比如当对象正被GC移动,指针上的颜色就会不对,这个屏障就会先把指针更新为有效地址再返回,也就是,永远只有单个对象读取时有概率被减速,而不存在为了保持应用与GC一致而粗暴整体的Stop The World。

参数
ZGC回收机预计在jdk11支持,ZGC目前仅适用于Linux / x64 。和G1开启很像,用下面参数即可开启:

-XX:+UnlockExperimentalVMOptions -XX:+UseZGC
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章