論文研讀-基於變量分類的動態多目標優化算法

論文研讀-基於變量分類的動態多目標優化算法

A Dynamic Multiobjective Evolutionary Algorithm Based on Decision Variable Classification

覺得有用的話,歡迎一起討論相互學習~

我的微博我的github我的B站

  • 此篇文章爲 Liang Z , Wu T , Ma X , et al. A Dynamic Multiobjective Evolutionary Algorithm Based on Decision Variable Classification[J]. IEEE Transactions on Cybernetics, 2020, PP(99):1-14. 的論文學習筆記,只供學習使用,不作商業用途,侵權刪除。並且本人學術功底有限如果有思路不正確的地方歡迎批評指正!

Abstract

  • 目前許多動態多目標進化算法DMOEAS主要是將多樣性引入或預測方法與傳統的多目標進化算法相結合來解決動態多目標問題DMOPS。其中種羣的多樣性和算法的收斂性的平衡十分重要。
  • 本文提出了基於決策變量分類的動態多目標優化算法DMOEA-DCV
  • DMOEA-DCV將在靜態優化階段將決策變量分成兩到三個不同的組,並且在相應階段分別進行改變。在靜態優化階段,兩個不同分組的決策向量使用不同的交叉算子以加速收斂保持多樣;在改變反饋階段,DMOEA-DVC分別採用維護、預測和多樣性引進策略重新初始化決策變量組。
  • 最後在33個DMOP benchmark上和先進的DMOEA進行了比較,取得了更優異的結果。

Introduction

  • DMOPs就是解決隨時間變化的多目標優化問題。傳統的DMOEA算法強調能夠隨着環境的改變動態響應,主流的算法可以分爲 多樣性引進策略diversity introduction approaches[1],[19]-[24]和預測方法 prediction approaches.[25]-[33]

對於diversity introduction approaches的方法:

  • 優點: Diversity introduction approaches introduce a certain proportion of randomized or mutated individuals into the evolution population once a change occurs to increase the population diversity. The increase of diversity can facilitate the algorithms to better adapt to the new environment.
  • 缺點: However, since these algorithms mainly rely on the static evolution search to find the optimal solution set after diversity introduction, the convergence might be slowed down.

對於Prediction approaches的方法:

  • 優點: 在變換的環境中提升收斂性能
  • 缺點:預測模型性能受限

目前存在的問題

  • 目前的方法不care決策變量之間的差異,使用相同的方式進行考慮,對於平衡種羣的多樣性和收斂性效率低。

提出基於變量分類的DMOEA(DMOEA-DVC)

  • DMOEA-DVC特點在於集合了diversity introduction, fast prediction models和decision variable classification methods, 多樣性引入和決策變量分類可以抵消彼此固有的缺陷。
  • 靜態優化時採用變量分類策略,改變相應階段時對不同的變量採用不同的進化算子和響應機制。

對比算法

  • DNSGA-II-B [1]
  • population prediction strategy (PPS) [25]
  • MOEA/D-KF [26]
  • steady state and generational evolutionary algorithm (SGEA) [33]
  • Tr-DMOEA [35]
  • DMOEA-CO [52]

benchmark

  • five FDA benchmarks [4]
  • three dMOP benchmarks [19]
  • two DIMP benchmarks [41]
  • nine JY benchmarks [42]
  • 14 newly developed DF benchmarks [43].

貢獻

  • 兩種決策變量分類方法
  • 靜態優化時,對兩種變量採用不同的進化方式
  • change responce時,使用保持,預測和引入多樣性混合響應策略以應對三種不同的決策變量。

BACKGROUND AND RELATED WORK

Basics of DMOP

動態帕累托最優解和動態帕累托最優解集

  • 基本上就是加上了時序t的概念的支配

多最優變量與單最優變量

  • 注意這裏的exist和any的表述!!
  • 換言之,如果一個決策變量是單最優變量,那麼PS()(t)上的這個變量具有相同的值,而如果這個決策變量是多最優變量,那麼PS(t)上的這個變量具有不同的值

DMOP問題的類型

DMOEA

  • DMOEA基本上可以分爲兩類:引入多樣性diversity introduction基於預測predictionbased approaches.

diversity introduction

  • diversity introduction 考慮的是當環境改變發生時,引入隨機的或變異的個體來避免種羣多樣性的損失。
  • Deb[1] DMOEAs : proposed two DMOEAs (DNSGAII- A and DNSGA-II-B) based on NSGA-II [7]. Once a change is detected, DNSGA-II-A randomly reinitializes 20% of the individuals, while DNSGA-II-B randomly mutates 20% of the individuals.
  • Goh and Tan [19] dCOEA: introduced a competitive-cooperative coevolutionary algorithm (dCOEA) where some new individuals are generated randomly to enhance the diversity of the population when the environment changes.
  • Helbig and Engelbrecht [20] HDVEPSO: proposed a heterogeneous dynamic vector-evaluated particle (非均勻動態矢量評估粒子) swarm optimization (HDVEPSO) algorithm by combining heterogeneous particle swarm optimization (HPSO) [21], [22] and dynamic vector-evaluated particle swarm optimization (DVEPSO) [23]. HDVEPSO randomly reinitializes 30% of the swarm particles after the objective function changes.
  • Martínez-Peñaloza and Mezura-Montes [24] combined generalized differential evolution (DE) along with an artificial immune system to solve DMOP (Immune-GDE3).
  • 總結,使種羣不易陷入局部最優並且易於實現。

predictionbased approaches

  • 爲了使種羣易於適應變換後的新的環境,提出了預測的方法
  • Zhou et al. [25] presented a PPS to divide the population into a center point and a manifold 中心和支管. The proposed method uses an autoregression (AR) 自迴歸 model to locate the next center point and uses the previous two consecutive manifolds 連續不斷的支管 to predict the next manifold. The predicted center point and manifold make up a new population more suitable to the new environment.
  • Muruganantham et al. [26] applied a Kalman filter [44] 卡爾曼濾波器 in the decision space to predict the new Pareto-optimal set. They also proposed a scoring scheme to decide the predicting proportion. 評分機制
  • Hatzakis and Wallace [27] 自迴歸和邊界點
  • Peng [28] 改進 exploration 和 exploitation 算子
  • Wei and Wang [29] hyperrectangle prediction (超矩形預測)
  • Ruan [30] gradual search (逐步搜索)
  • Wu et al. [31] reinitialized individuals in the orthogonal direction (正交方向) to the predicted direction of the population in change response.
  • Ma et al. [32] utilized a simple linear model to generate the population in the new environment.
  • Jiang and Yang [33] introduced an SGEA, which guides the search of the solutions by a moving direction from the centroid of the nondominated solution set to `the centroid of the entire population. The step size of the search is defined as the Euclidean distance between the centroids of the nondominated solution set at time steps (t−1) and t.
  • 總結:預測的方法提高了算法的收斂效率
  • 本文通過結合多樣性引入和基於快速預測的方法來利用兩者的優點,提出了一種增強的變化響應策略。

Decision Variable Classification Methods

  • 無論是多樣性引入還是預測方法都可以被視爲在搜索最優解時的概率模型。大多數現有的DMOEA都假定所有決策變量都在相同的概率分佈下。 但是,在實際的DMOP中,決策變量的概率分佈可能會發生很大變化。 通過決策變量分類,可以將決策變量分爲不同的組,然後可以將特定的概率搜索模型應用於相應的變量組以獲得更好的解決方案。

基於擾動的變量分類

在靜態問題中

  • 例如,在[45]-[48]中通過決策變量擾動實現了決策變量分類。 決策變量擾動會產生大量個體進行分類,併成比例地消耗大量適應性評估。 該策略對於靜態MOP效果很好,在靜態MOP中,決策變量的類別不變,並且僅需要分類一次。

在動態問題中

  • 決策變量的分類經常變化,因此需要更多次數的分類和評價次數
  • 很少有方法將決策變量分類的方法運用到動態問題中,現有的靜態問題的方法不太合適。
  • Woldesenbet和Yen [51]通過對目標空間變化的平均敏感度來區分決策變量,並以此爲基礎來重新安置個體。 該方法對於動態單目標優化問題效果很好,但是不適用於DMOP。
  • Xu[52]提出了一種針對DMOP的協作式協同進化算法,其中決策變量被分解爲兩個子組件,即相對於環境變量t不可分離和可分離的變量。 應用兩個種羣分別協同優化兩個子組件。 文獻[52]中提出的算法在基於環境敏感性可分解決策變量的DMOP上具有優越性,但是,在許多DMOP中可能並非如此。

本文提出的方法

  • 在本文中,我們提出了一種適用於大多數DMOP的更通用的決策變量分類方法。所提出的方法沒有使用額外的目標評估或迭代積累來收集統計信息就實現了準確的分類。特別地,決策變量分類方法使用決策變量和目標函數之間的統計信息,該統計信息在每次環境變化之後的第一次迭代中可用,也就是說,不需要消耗額外的適應性評估。值得強調的是,本文提出的分類是區分DMOP中決策變量分佈(即單個最優值或多個最優最優值)的首次嘗試。從搜索開始,就採用了不同的策略來採樣不同的決策變量。這樣,決策變量可以在迭代過程中儘可能服從PS(t)的分佈,從而更好地覆蓋和逼近PS(t)。

提出的框架和實現


變量分類Decision Variable Classification

  • 文中提出的變量分類分爲兩種,一種對應算法1 line 6 ,靜態優化時的變量分類,一種對應算法1 line9 ,動態優化時的變量分類。

Decision Variable Classification in Static Optimization

首先變量可以被分爲single optimal收斂 和multi-optimal多樣

  • 一句話概括一下:對於single optimal的維度應該和最好的個體越近越好,而multi-optimal的維度則應當越遠越好。否則易陷入局部最優,並且在迭代早期精英策略會導致multi-optimal的維度也向最優解靠攏,影響多樣性。

區分single optimal收斂 和multi-optimal變量

  • 如果目標函數在一個變量上矛盾,則這個變量是multi-optimal的
  • In DMOP, the objective functions could conflict with each other on some decision variables [46], [53]. If two objective functions conflict on a decision variable, the decision variable is deemed to have multiple optimal values.

具體操作:

(自我思考)這裏需要考慮一個問題,就是當一個變量進行改變時,其他變量也不是相同的,如何去單獨考慮一個變量對於整體的變化,如果變量的維度大,如何證明是這個變量而不是其他變量的變化導致目標函數的變化呢?這裏解釋是在DOMP中,一般只有一個變量是multi的,而其餘都是single的,這個解釋覺得還可以進一步完善和改進。但是作爲節省計算資源而言,這的確是一個比較折中的辦法

使用SRCC來評價變量和目標函數之間的關係

大體思想是,將種羣中所有個體的這個變量從低到高進行排序,然後對種羣中這些個體的單個目標值進行進行排序,這兩個排序的rank差值就是這個個體的d(i,j,k).然後通過d(i,j,k)來計算r,而當r大於或者小於一個閾值的時候,就意味着變量i和目標j具有正相關或者負相關性

算法流程

Decision Variable Classification in Change Response

  • 在DMOP中,決策變量可分爲similar ,predictable 和 unpredictable
    • similar 變量:在連續兩次環境變化中沒有什麼變化,環境變化時,不需要重新初始化
    • predictable 變量: 在環境變化中,預測可以帶來顯著提升,環境變化時,需要通過預測的方式重新初始化
    • unpredictable 變量:預測幾乎帶來不了提升,環境變化時,通過引入多樣性重新初始化
  • 非參數的t檢驗被用於評價決策變量改變和環境的相關性 ,對於當前第i個變量與上個世代的第i個變量之間的關係可以表示爲:

使用t檢驗區分變量-相似性與非相似性變量

對於非相似性變量,判斷其是否是可以預測的變量

  • x_center表示種羣中所有個體的決策變量的平均值,x_trial[i]表示種羣中x_center第i個決策變量經過預測的方法變化後的結果而其餘的變量保持不變,如果x_trial[i]能夠支配x_center則表示這個第i個決策變量是可以預測的,否則則認爲第i個決策變量是不能預測的。

對於某些問題,預測的方法不可行

算法流程

環境選擇

  • DMOEA-DVC和SGEA[33]使用相同的選擇方法,適應度函數F(i)表示支配個體xi的個體數目
  • 如果存檔A中個體少於N則從種羣中挑選最好的個體進P’,如果剛好相等,就將A中所有個體轉入P’,如果存檔A中個體多了就從種羣中挑選最遠的個體進P’.

改變響應

  • 對於環境改變後的響應,對於DMOEA-DVC中分類出的三種變量,分別使用maintenance保持,diversity introduction 多樣性引入和prediction approach 預測方式三種對決策變量進行處理。

maintenance 保持

  • 如果變量是相似的則保持不變

Diversity Introduction

  • 如果變量不可預測

使用kalman進行預測

  • 如果對預測方式不清楚可以參考[25]和[33]
  • 如果變量可以預測

生成子代

  • 論文認爲SBX生成的子代會離父代很近,因此適合single-optimal的決策變量,而DE生成的子代裏父代很遠,因此適合multi-optimal的決策變量

  • 總體流程

個體更新規則

  • 詳見[33]

計算複雜度

[1] K. Deb, U. V. Rao, and S. Karthik, “Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling,” in Proc. EMO, vol. 4403, 2007, pp. 803–817.
[4] M. Farina, K. Deb, and P. Amato, “Dynamic multi-objective optimization problems: Test cases, approximations, and applications,” IEEE Trans. Evol. Comput., vol. 8, no. 5, pp. 425–442, Oct. 2004.
[19] C.-K. Goh and K. C. Tan, “A competitive-cooperative coevolutionary paradigm for dynamic multi-objective optimization,” IEEE Trans. Evol. Comput., vol. 13, no. 1, pp. 103–127, Feb. 2009.
[20] M. Helbig and A. P. Engelbrecht, “Heterogeneous dynamic vector evaluated particle swarm optimization for dynamic multi-objective optimization,” in Proc. IEEE Congr. Evol. Comput. (CEC), 2014, pp. 3151–3159.
[21] A. P. Engelbrecht, “Heterogeneous particle swarm optimization,” in Proc. Int. Conf. Swarm Intell., 2010, pp. 191–202.
[22] M. A. M. de Oca, J. Peña, T. Stützle, C. Pinciroli, and M. Dorigo, “Heterogeneous particle swarm optimizers,” in Proc. IEEE Congr. Evol. Comput. (CEC), 2009, pp. 698–705.
[23] M. Greeff and A. P. Engelbrecht, “Solving dynamic multi-objective problems with vector evaluated particle swarm optimization,” in Proc. IEEE Congr. Evol. Comput. (CEC), 2008, pp. 2917–2924.
[24] M. Martínez-Peñaloza and E. Mezura-Montes, “Immune generalized differential evolution for dynamic multi-objective optimization problems,” in Proc. IEEE Congr. Evol. Comput. (CEC), 2015, pp. 846–851.
[25] A. Zhou, Y. Jin, and Q. Zhang, “A population prediction strategy for evolutionary dynamic multi-objective optimization,” IEEE Trans. Cybern., vol. 44, no. 1, pp. 40–53, Jan. 2014.
[26] A. Muruganantham, K. C. Tan, and P. Vadakkepat, “Evolutionary dynamic multi-objective optimization via Kalman filter prediction,” IEEE Trans. Cybern., vol. 46, no. 12, pp. 2862–2873, Dec. 2016.
[27] I. Hatzakis and D. Wallace, “Dynamic multi-objective optimization with evolutionary algorithms: A forward-looking approach,” in Proc. ACM Conf. Genet. Evol. Comput., 2006, pp. 1201–1208.
[28] Z. Peng, J. Zheng, J. Zou, and M. Liu, “Novel prediction and memory strategies for dynamic multi-objective optimization,” Soft Comput., vol. 19, no. 9, pp. 2633–2653, 2014.
[29] J. Wei and Y. Wang, “Hyper rectangle search based particle swarm algorithm for dynamic constrained multi-objective optimization problems,” in Proc. IEEE Congr. Evol. Comput. (CEC), 2012, pp. 259–266.
[30] G. Ruan, G. Yu, J. Zheng, J. Zou, and S. Yang, “The effect of diversity maintenance on prediction in dynamic multiobjective optimization,” Appl. Soft Comput., vol. 58, pp. 631–647, Sep. 2017.
[31] Y. Wu, Y. Jin, and X. Liu, “A directed search strategy for evolutionary dynamic multi-objective optimization,” Soft Comput., vol. 19, no. 11, pp. 3221–3235, 2015.
[32] Y. Ma, R. Liu, and R. Shang, “A hybrid dynamic multi-objective immune optimization algorithm using prediction strategy and improved differential evolution crossover operator,” in Proc. Neural Inf. Process., vol. 7063, 2011, pp. 435–444.
[33] S. Jiang and S. Yang, “A steady-state and generational evolutionary algorithm for dynamic multi-objective optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 1, pp. 65–82, Feb. 2017.
[35] M. Jiang, Z. Huang, L. Qiu, W. Huang, and G. G. Yen, “Transfer learning based dynamic multiobjective optimization algorithms,” IEEE Trans. Evol. Comput., vol. 22, no. 4, pp. 501–514, Aug. 2018, doi: 10.1109/TEVC.2017.2771451.
[41] W. Koo, C. Goh, and K. C. Tan, “A predictive gradient strategy for multi-objective evolutionary algorithms in a fast changing environment,” Memetic Comput., vol. 2, no. 2, pp. 87–110, 2010.
[42] S. Jiang and S. Yang, “Evolutionary dynamic multi-objective optimization: Benchmarks and algorithm comparisons,” IEEE Trans. Cybern., vol. 47, no. 1, pp. 198–211, Jan. 2017.
[43] S. Jiang, S. Yang, X. Yao, and K. C. Tan, “Benchmark functions for the CEC’2018 competition on dynamic multiobjective optimization,” Centre Comput. Intell., Newcastle Univ., Newcastle upon Tyne, U.K., Rep. TRCEC2018, 2018.
[44] A. Muruganantham, Y. Zhao, S. B. Gee, X. Qiu, and K. C. Tan, “Dynamic multi-objective optimization using evolutionary algorithm with Kalman filter,” Proc Comput. Sci., vol. 24, pp. 66–75, Nov. 2013.
[45] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable clustering-based evolutionary algorithm for large-scale many-objective optimization,” IEEE Trans. Evol. Comput., vol. 22, no. 1, pp. 97–112, Feb. 2018.
[46] X. Ma et al., “A multiobjective evolutionary algorithm based on decision variable analysis for multiobjective optimization problems with largescale variables,” IEEE Trans. Evol. Comput., vol. 20, no. 2, pp. 275–298, Apr. 2016.
[47] C. K. Goh, K. C. Tan, D. S. Liu, and S. C. Chiam, “A competitive and cooperative co-evolutionary approach to multi-objective particle swarm optimization algorithm design,” Eur. J. Oper. Res., vol. 202, no. 1, pp. 42–54, 2010.
[48] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution with differential grouping for large scale optimization,” IEEE Trans. Evol. Comput., vol. 18, no. 3, pp. 378–393, Jun. 2014.
[49] J. Sun and H. Dong, “Cooperative co-evolution with correlation identification grouping for large scale function optimization,” in Proc. Int. Conf. Inf. Sci. Technol. (ICIST), 2013, pp. 889–893.
[50] M. N. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with delta grouping for large scale non-separable function optimization” in Proc. IEEE Congr. Evol. Comput., 2010, pp. 1762–1769.
[51] Y. G. Woldesenbet and G. G. Yen, “Dynamic evolutionary algorithm with variable relocation,” IEEE Trans. Evol. Comput., vol. 13, no. 3, pp. 500–513, Jun. 2009.
[52] B. Xu, Y. Zhang, D. Gong, Y. Guo, and M. Rong, “Environment sensitivity-based cooperative co-evolutionary algorithms for dynamic multi-objective optimization,” IEEE/ACM Trans. Comput. Biol. Bioinform., vol. 15, no. 6, pp. 1877–1890, Nov./Dec. 2017.
[53] S. Huband, P. Hingston, L. Barone, and L. While, “A review of multiobjective test problems and a scalable test problem toolkit,” IEEE Trans. Evol. Comput., vol. 10, no. 5, pp. 477–506, Oct. 2006.
[54] B. Student, “The probable error of a mean,” Biometrika, vol. 6, no. 1, pp. 1–25, 1908.
[55] D. Wang, H. Zhang, R. Liu, W. Lv, and D. Wang, “t-test feature selection approach based on term frequency for text categorization,” Pattern Recognit. Lett., vol. 45, no. 1, pp. 1–10, 2014.
[56] B. Chen, W. Zeng, Y. Lin, and D. Zhang, “A new local search based multi-objective optimization algorithm,” IEEE Trans. Evol. Comput., vol. 19, no. 1, pp. 50–73, Feb. 2015.
[57] C. Chen and L. Y. Tseng, “An improved version of the multiple trajectory search for real value multi-objective optimization problems,” Eng. Optim., vol. 46, no. 10, pp. 1430–1445, 2014.
[58] C. Rossi, M. Abderrahim, and J. C. Díaz, “Tracking moving optima using Kalman-based predictions,” Evol. Comput., vol. 16, no. 1, pp. 1–30, 2008.

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章