AI筆記: 數學基礎之方向導數的計算和梯度

方向導數

定理

  • 若函數f(x,y,z)在點P(x,y,z)處可微,沿任意方向l的方向導數
  • fl=fxcosα+fycosβ+fzcosγ\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} cos \alpha + \frac{\partial f}{\partial y} cos \beta + \frac{\partial f}{\partial z} cos \gamma
  • 其中α,β,γ\alpha, \beta, \gamma 爲l的方向角
  • 證明
    • 由函數f(x,y,z)f(x,y,z)在點P可微
    • f=fxx+fyy+fzz+o(ρ)\triangle f = \frac{\partial f}{\partial x} \triangle x + \frac{\partial f}{\partial y} \triangle y + \frac{\partial f}{\partial z} \triangle z + o(\rho)
    • =ρ(fxcosα+fycosβ+fzcosγ)+o(ρ)= \rho(\frac{\partial f}{\partial x} cos \alpha + \frac{\partial f}{\partial y} cos \beta + \frac{\partial f}{\partial z} cos \gamma) + o(\rho)
    • fl=limρ0fρ=fxcosα+fycosβ+fzcosγ\frac{\partial f}{\partial l} = \lim_{\rho \to 0} \frac{\triangle f}{\rho} = \frac{\partial f}{\partial x} cos \alpha + \frac{\partial f}{\partial y} cos \beta + \frac{\partial f}{\partial z} cos \gamma

備註:圖片託管於github,請確保網絡的可訪問性

  • 對於二元函數f(x,y)在點P(x,y)處沿着方向l(方向角爲α,β\alpha, \beta)的方向導數爲
  • fl=limρ0f(x+x,y+y)f(x,y)ρ=fx(x,y)cosα+fy(x,y)cosβ\frac{\partial f}{\partial l} = \lim_{\rho \to 0} \frac{f(x+\triangle x, y + \triangle y) - f(x,y)}{\rho} = f_x'(x,y)cos \alpha + f_y'(x,y) cos \beta
    • ρ=(x)2+(y)2\rho = \sqrt{(\triangle x)^2 + (\triangle y)^2}
    • x=ρcosα\triangle x = \rho cos \alpha
    • y=ρcosβ\triangle y = \rho cos \beta
  • 特別地
    • l與x軸同向(α=0,β=π2\alpha = 0, \beta = \frac{\pi}{2})時,有fl=fx\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x}
    • l與x軸反向(α=π,β=π2\alpha = \pi, \beta = \frac{\pi}{2})時,有fl=fx\frac{\partial f}{\partial l} = -\frac{\partial f}{\partial x}

備註:圖片託管於github,請確保網絡的可訪問性

方向導數

  • 方向導數(directional derivative): 有時不僅僅需要知道函數在座標軸上的變化率(即偏導數),還需要設法求得函數在其他特定方向上的變化率;
  • 而方向導數就是函數在其他特定方向上的變化率。
  • 如果函數z=f(x,y)z=f(x,y)在點P(x,y)是可微分的,那麼,函數在該點沿着任意方向L的方向導數都存在
  • 且計算公式爲:fl=fxcosα+fycosβ\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} cos \alpha + \frac{\partial f}{\partial y} cos \beta

備註:圖片託管於github,請確保網絡的可訪問性

例1

  • 求函數u=x2yzu = x^2yz 在點P(1,1,1)沿向量 l=(2,1,3)\vec{l} = (2, -1, 3)的方向導數.
  • ul=uxcosα+uycosβ+uzcosγ\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x} cos \alpha + \frac{\partial u}{\partial y} cos \beta + \frac{\partial u}{\partial z} cos \gamma
    • 向量l\vec{l}的方向餘弦爲: cosα=214,cosβ=114,cosγ=314cos \alpha = \frac{2}{\sqrt{14}}, \cos \beta = \frac{-1}{\sqrt{14}}, cos \gamma = \frac{3}{\sqrt{14}}
    • ulP=(2xyz214)x2z114+x2y314(1,1,1)=614\left. \frac{\partial u}{\partial l} \right|_P = \left. (2xyz * \frac{2}{\sqrt{14}}) - x^2z * \frac{1}{\sqrt{14}} + x^2y * \frac{3}{\sqrt{14}} \right|_{(1,1,1)} = \frac{6}{\sqrt{14}}

例2

  • 求函數z=xe2yz=xe^{2y}在點P(1,0)處沿從點P(1,0)到點Q(2, -1)的方向的方向導數
    • 方向l即向量PQ=(1,1)PQ = (1, -1)的方向,與l同方向的單位向量el=(12,12).=(cosα,cosβ)e_l = (\frac{1}{\sqrt{2}}, - \frac{1}{\sqrt{2}}). = (cos \alpha, cos \beta)
    • 因函數可微,且zx(1,0)=e2y(1,0)=1,zy(1,0)=2xe2y(1,0)=2\left. \frac{\partial z}{\partial x} \right|_{(1,0)} = \left. e^{2y} \right|_{(1,0)} = 1, \left. \frac{\partial z}{\partial y} \right|_{(1,0)} = \left. 2xe^{2y} \right|_{(1,0)} = 2
    • 所以,所求方向導數爲:zl(1,0)=112+2(12)=22\left. \frac{\partial z}{\partial l} \right|_{(1,0)} = 1 * \frac{1}{\sqrt{2}} + 2 * (- \frac{1}{\sqrt{2}}) = - \frac{\sqrt{2}}{2}

例3

  • f(x,y,z)=xy+yz+zxf(x,y,z) = xy + yz + zx 在點(1,1,2)沿方向l的方向導數,其中l的方向角分別爲:60°, 45°, 60°
  • 解:
    • 與l同方向的單位向量 el=(cos60°,cos45°,cos60°)=(12,22,12)e_l = (cos 60°, cos 45°, cos 60°) = (\frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{1}{2})
    • 因函數可微,且
      • fx(1,1,2)=(y+z)(1,1,2)=3f_x'(1,1,2) = (y + z)|_{(1,1,2)} = 3
      • fy(1,1,2)=(x+z)(1,1,2)=3f_y'(1,1,2) = (x + z)|_{(1,1,2)} = 3
      • fz(1,1,2)=(y+x)(1,1,2)=2f_z'(1,1,2) = (y + x)|_{(1,1,2)} = 2
    • 所以fl(1,1,2)=312+322+212=12(5+32)\frac{\partial f}{\partial l} |_{(1,1,2)} = 3*\frac{1}{2} + 3*\frac{\sqrt{2}}{2} + 2*\frac{1}{2} = \frac{1}{2}(5 + 3\sqrt{2})

梯度

1 ) 概念

  • 在空間的每一個點都可以確定無限多個方向,因此,一個多元函數在某個點也必然有無限多個方向導數.
  • 在這無限多個方向導數中,最大的一個(它直接反映了函數在這個點的變化率的數量級)等於多少? 它是沿什麼方向達到的?
  • 描述這個最大方向導數及其所沿方向的矢量,就是我們所討論的梯度.
  • 梯度是場論裏的一個基本概念.所謂"場", 它表示空間區域上某種物理量的一種分佈
  • 從數學上看,這種分佈常常表示爲 Ω\Omega 上的一種數值函數或向量函數
  • 能表示爲數值函數u=u(x,y,z)的場,稱爲數量場,如溫度場、密度場等

2 ) 方向導數公式

  • fl=fxcosα+fycosβ+fzcosγ\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} cos \alpha + \frac{\partial f}{\partial y} cos \beta + \frac{\partial f}{\partial z} cos \gamma
    • 令向量 G=(fx,fy,fz)\vec{G} = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})
    • l°=(cosα,cosβ,cosγ)\vec{l°} = (cos \alpha, cos \beta, cos \gamma)
  • fl=Gl°=Gcos(G,l°)   (l°=1)\frac{\partial f}{\partial l} = \vec{G}·\vec{l°} = |\vec{G}|cos(\vec{G}, \vec{l°}) \ \ \ (|\vec{l°}| = 1)
  • l°\vec{l°}G\vec{G}方向一致時,方向導數取最大值:max(fl)=Gmax(\frac{\partial f}{\partial l}) = |\vec{G}|
  • 可見:G\vec{G}
    • 方向:f 變化率最大的方向
    • 模:f 的最大變化率之值

3 ) 梯度定義

  • 向量G\vec{G}:稱爲函數f(P)f(P)在點P處的梯度(gradient), 記做:grad f
  • grad f=(fx,fy,fz)=fxi+fyj+fzkgrad \ f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z}\vec{k}
  • 同樣可定義二元函數f(x,y)在點P(x,y)處的梯度 grad f=fxi+fyj=(fx,fy)grad \ f = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y})
  • 說明:函數的方向導數爲梯度在該方向上的投影
  • =(x,y)\nabla = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}), 引用記號,稱爲奈布拉(Nebla)算符,或稱爲向量微分算子或哈密頓(W.R.Hamilton)算子
  • 則梯度可記爲:grad f=(fx,fy)fgrad \ f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}) \nabla f
    • 函數f沿梯度grad f方向,增加最快(上升)
    • 函數f沿負梯度 -grad f方向,減小最快(下降)
  • grad f(x0,y0)=fx(x0,y0)i+fy(x0,y0)j)grad \ f(x_0, y_0) = f_x'(x_0, y_0)i + f_y'(x_0, y_0)j)
    • f(x0,y0)=fx(x0,y0)i+fy(x0,y0)j=fx(x0,y0),fy(x0,y0)\nabla f(x_0, y_0) = f_x'(x_0, y_0)i + f_y'(x_0, y_0) j = {f_x'(x_0, y_0), f_y'(x_0, y_0)}
  • grad f=(fx,fy,fz)=fxi+fyj+fzkgrad \ f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z}\vec{k}
    • f(x0,y0,z0)={fx(x0,y0,z0),fy(x0,y0,z0),fz(x0,y0,z0)}=fx(x0,y0,z0)i+fy(x0,y0,z0)j+fz(x0,y0,z0)k\nabla f(x_0, y_0, z_0) = \{f_x'(x_0, y_0, z_0), f_y'(x_0, y_0, z_0), f_z'(x_0, y_0, z_0)\} = f_x'(x_0, y_0, z_0)i + f_y'(x_0, y_0, z_0)j + f_z'(x_0, y_0, z_0)k

說明

  • 以三元函數爲例,設u=f(x,y,z)u=f(x,y,z)在點P(x,y,z)處可微分,則函數在該點的梯度爲 grad f=f=fxi+fyj+fzk=(fx,fy,fz)=((f)(x,y,z))grad \ f = \nabla f = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z}\vec{k} = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) = (\frac{\partial (f)}{\partial(x,y,z)})
  • 梯度是函數u=f(x,y,z)u=f(x,y,z)在點P處取得的最大方向導數的方向,最大方向導數爲:grad f=(fx)2+(fy)2+(fz)2|grad \ f| = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2 + (\frac{\partial f}{\partial z})^2}
  • 函數u=f(x,y,z)u=f(x,y,z)在點P處沿方向l\vec{l}的方向導數:fl=grad fl°=fl°\frac{\partial f}{\partial \vec{l}} = grad \ f·\vec{l°} = \nabla f · \vec{l °}

例1

  • grad 1x2+y2grad \ \frac{1}{\sqrt{x^2 + y^2}}
  • 解:
    • 這裏f(x,y)=1x2+y2f(x,y) = \frac{1}{x^2 + y^2}
    • fx=2x(x2+y2)2,fy=2y(x2+y2)2\frac{\partial f}{\partial x} = - \frac{2x}{(x^2 + y^2)^2}, \frac{\partial f}{\partial y} = - \frac{2y}{(x^2 + y^2)^2}
    • 所以,grad 1x2+y2=2x(x2+y2)2i2y(x2+y2)2jgrad \ \frac{1}{\sqrt{x^2 + y^2}} = - \frac{2x}{(x^2 + y^2)^2} \vec{i} - \frac{2y}{(x^2 + y^2)^2} \vec{j}

例2

  • f(x,y,z)=x3xy2zf(x,y,z) = x^3 - xy^2 - z, p(1,1,0)p(1,1,0).
  • 問f(x,y,z)在p處沿什麼方向變化最快,在這方向的變化率是多少?
    • f=fxi+fyj+fzk=(3x2y2)i2xyjk\nabla f = f_x'i + f_y'j + f_z'k = (3x^2 - y^2)i - 2xyj - k
    • f(1,1,0)=2i2jk\nabla f(1,1,0) = 2i - 2j - k
    • 沿 f(1,1,0)\nabla f(1,1,0) 方向,增加最快(上升)
    • 沿 f(1,1,0)- \nabla f(1,1,0) 方向,增加最快(下降)
    • max{flp}=grad f=f(1,1,0)=3max\{\frac{\partial f}{\partial l} |_p\} = |grad \ f| = |\nabla f(1,1,0)| = 3
    • min{flp}=grad f=f(1,1,0)=3min\{\frac{\partial f}{\partial l} |_p\} = -|grad \ f| = -|\nabla f(1,1,0)| = -3
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章