如何用DL4J構建起一個人臉識別系統

一、概述

   人臉識別本質上是一個求相似度的問題,相同的人臉映射到同一個空間,他們的距離比較近,這個距離的度量可以是餘弦距離,也可以是歐幾里得距離,或者其他的距離。下面有三個頭像。

                       

                    A                                          B                                     C

   顯然A和C是相同人臉,A和B是不同人臉,用數學怎麼描述呢?假設有個距離函數d(x1,x2),那麼 d(A,B) > d(A,C)。在真實的人臉識別應用中,函數d(x1,x2)小到一個什麼範圍才認定爲同一張人臉呢?這個值和訓練模型時的參數有關,這個將在下文中給出。值得注意的是,如果函數d爲cosine,則值越大表示越相似。一個通用的人臉識別模型應該包含特徵提取(也就是特徵映射)和距離計算兩個單元。

二、構造模型

    那麼有什麼辦法可以特徵映射呢?對於圖像的處理,卷積神經網絡無疑是目前最優的辦法。DeepLearning4J已經內置了訓練好的VggFace模型,是基於vgg16訓練的。vggFace的下載地址:https://dl4jdata.blob.core.windows.net/models/vgg16_dl4j_vggface_inference.v1.zip,這個地址是怎麼獲取到的呢?直接跟一下源碼VGG16,pretrainedUrl方法裏的DL4JResources.getURLString方法便有相關模型的下載地址,VGG19、ResNet50等等pretrained的模型下載地址,都可以這樣找到。源碼如下

public class VGG16 extends ZooModel {

    @Builder.Default private long seed = 1234;
    @Builder.Default private int[] inputShape = new int[] {3, 224, 224};
    @Builder.Default private int numClasses = 0;
    @Builder.Default private IUpdater updater = new Nesterovs();
    @Builder.Default private CacheMode cacheMode = CacheMode.NONE;
    @Builder.Default private WorkspaceMode workspaceMode = WorkspaceMode.ENABLED;
    @Builder.Default private ConvolutionLayer.AlgoMode cudnnAlgoMode = ConvolutionLayer.AlgoMode.PREFER_FASTEST;

    private VGG16() {}

    @Override
    public String pretrainedUrl(PretrainedType pretrainedType) {
        if (pretrainedType == PretrainedType.IMAGENET)
            return DL4JResources.getURLString("models/vgg16_dl4j_inference.zip");
        else if (pretrainedType == PretrainedType.CIFAR10)
            return DL4JResources.getURLString("models/vgg16_dl4j_cifar10_inference.v1.zip");
        else if (pretrainedType == PretrainedType.VGGFACE)
            return DL4JResources.getURLString("models/vgg16_dl4j_vggface_inference.v1.zip");
        else
            return null;
    }

    vgg16的模型結構如下:

====================================================================================================
VertexName (VertexType)        nIn,nOut     TotalParams   ParamsShape                  Vertex Inputs
====================================================================================================
input_1 (InputVertex)          -,-          -             -                            -            
conv1_1 (ConvolutionLayer)     3,64         1,792         W:{64,3,3,3}, b:{1,64}       [input_1]    
conv1_2 (ConvolutionLayer)     64,64        36,928        W:{64,64,3,3}, b:{1,64}      [conv1_1]    
pool1 (SubsamplingLayer)       -,-          0             -                            [conv1_2]    
conv2_1 (ConvolutionLayer)     64,128       73,856        W:{128,64,3,3}, b:{1,128}    [pool1]      
conv2_2 (ConvolutionLayer)     128,128      147,584       W:{128,128,3,3}, b:{1,128}   [conv2_1]    
pool2 (SubsamplingLayer)       -,-          0             -                            [conv2_2]    
conv3_1 (ConvolutionLayer)     128,256      295,168       W:{256,128,3,3}, b:{1,256}   [pool2]      
conv3_2 (ConvolutionLayer)     256,256      590,080       W:{256,256,3,3}, b:{1,256}   [conv3_1]    
conv3_3 (ConvolutionLayer)     256,256      590,080       W:{256,256,3,3}, b:{1,256}   [conv3_2]    
pool3 (SubsamplingLayer)       -,-          0             -                            [conv3_3]    
conv4_1 (ConvolutionLayer)     256,512      1,180,160     W:{512,256,3,3}, b:{1,512}   [pool3]      
conv4_2 (ConvolutionLayer)     512,512      2,359,808     W:{512,512,3,3}, b:{1,512}   [conv4_1]    
conv4_3 (ConvolutionLayer)     512,512      2,359,808     W:{512,512,3,3}, b:{1,512}   [conv4_2]    
pool4 (SubsamplingLayer)       -,-          0             -                            [conv4_3]    
conv5_1 (ConvolutionLayer)     512,512      2,359,808     W:{512,512,3,3}, b:{1,512}   [pool4]      
conv5_2 (ConvolutionLayer)     512,512      2,359,808     W:{512,512,3,3}, b:{1,512}   [conv5_1]    
conv5_3 (ConvolutionLayer)     512,512      2,359,808     W:{512,512,3,3}, b:{1,512}   [conv5_2]    
pool5 (SubsamplingLayer)       -,-          0             -                            [conv5_3]    
flatten (PreprocessorVertex)   -,-          -             -                            [pool5]      
fc6 (DenseLayer)               25088,4096   102,764,544   W:{25088,4096}, b:{1,4096}   [flatten]    
fc7 (DenseLayer)               4096,4096    16,781,312    W:{4096,4096}, b:{1,4096}    [fc6]        
fc8 (DenseLayer)               4096,2622    10,742,334    W:{4096,2622}, b:{1,2622}    [fc7]        
----------------------------------------------------------------------------------------------------
            Total Parameters:  145,002,878
        Trainable Parameters:  145,002,878
           Frozen Parameters:  0

       對於VggFace我們只需要前面的卷積層和池化層來提取特徵,其他的全連接層可以丟棄掉,那麼我們的模型可以設置成如下的樣子。

    說明:這裏用StackVertex和UnStackVertex的原因是,dl4j中默認情況下有都給輸入時是把張量Merge在一起輸入的,達不到多個輸入共享權重的目的,所以這裏先用StackVertex沿着第0維堆疊張量,共享卷積和池化提取特徵,再用UnStackVertex拆開張量,給後面用於計算距離用。

    接下來的問題是,dl4j中遷移學習api只能在模型尾部追加相關的結構,而現在我們的場景是把pretrained的模型的部分結構放在中間,怎麼辦呢?不着急,我們看看遷移學習API的源碼,看DL4J是怎麼封裝的。在org.deeplearning4j.nn.transferlearning.TransferLearning的build方法中找到了蛛絲馬跡。

public ComputationGraph build() {
            initBuilderIfReq();

            ComputationGraphConfiguration newConfig = editedConfigBuilder
                    .validateOutputLayerConfig(validateOutputLayerConfig == null ? true : validateOutputLayerConfig).build();
            if (this.workspaceMode != null)
                newConfig.setTrainingWorkspaceMode(workspaceMode);
            ComputationGraph newGraph = new ComputationGraph(newConfig);
            newGraph.init();

            int[] topologicalOrder = newGraph.topologicalSortOrder();
            org.deeplearning4j.nn.graph.vertex.GraphVertex[] vertices = newGraph.getVertices();
            if (!editedVertices.isEmpty()) {
                //set params from orig graph as necessary to new graph
                for (int i = 0; i < topologicalOrder.length; i++) {

                    if (!vertices[topologicalOrder[i]].hasLayer())
                        continue;

                    org.deeplearning4j.nn.api.Layer layer = vertices[topologicalOrder[i]].getLayer();
                    String layerName = vertices[topologicalOrder[i]].getVertexName();
                    long range = layer.numParams();
                    if (range <= 0)
                        continue; //some layers have no params
                    if (editedVertices.contains(layerName))
                        continue; //keep the changed params
                    INDArray origParams = origGraph.getLayer(layerName).params();
                    layer.setParams(origParams.dup()); //copy over origGraph params
                }
            } else {
                newGraph.setParams(origGraph.params());
            }

    原來是直接調用 layer.setParams方法,給每一個層set相關的參數即可。接下來,我們就有思路了,直接構造一個和vgg16一樣的模型,把vgg16的參數set到新的模型裏即可。其實本質上,DeepLearning被train之後,有用的就是參數而已,有了這些參數,我們就可以隨心所欲的用這些模型了。廢話不多說,我們直接上代碼,構建我們目標模型

private static ComputationGraph buildModel() {
        ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder().seed(123)
                .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).activation(Activation.RELU)
                .graphBuilder().addInputs("input1", "input2").addVertex("stack", new StackVertex(), "input1", "input2")
                .layer("conv1_1",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nIn(3).nOut(64)
                                .build(),
                        "stack")
                .layer("conv1_2",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(64).build(),
                        "conv1_1")
                .layer("pool1",
                        new SubsamplingLayer.Builder().poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
                                .stride(2, 2).build(),
                        "conv1_2")
                // block 2
                .layer("conv2_1",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(128).build(),
                        "pool1")
                .layer("conv2_2",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(128).build(),
                        "conv2_1")
                .layer("pool2",
                        new SubsamplingLayer.Builder().poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
                                .stride(2, 2).build(),
                        "conv2_2")
                // block 3
                .layer("conv3_1",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(256).build(),
                        "pool2")
                .layer("conv3_2",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(256).build(),
                        "conv3_1")
                .layer("conv3_3",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(256).build(),
                        "conv3_2")
                .layer("pool3",
                        new SubsamplingLayer.Builder().poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
                                .stride(2, 2).build(),
                        "conv3_3")
                // block 4
                .layer("conv4_1",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(),
                        "pool3")
                .layer("conv4_2",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(),
                        "conv4_1")
                .layer("conv4_3",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(),
                        "conv4_2")
                .layer("pool4",
                        new SubsamplingLayer.Builder().poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
                                .stride(2, 2).build(),
                        "conv4_3")
                // block 5
                .layer("conv5_1",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(),
                        "pool4")
                .layer("conv5_2",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(),
                        "conv5_1")
                .layer("conv5_3",
                        new ConvolutionLayer.Builder().kernelSize(3, 3).stride(1, 1).padding(1, 1).nOut(512).build(),
                        "conv5_2")
                .layer("pool5",
                        new SubsamplingLayer.Builder().poolingType(SubsamplingLayer.PoolingType.MAX).kernelSize(2, 2)
                                .stride(2, 2).build(),
                        "conv5_3")
                .addVertex("unStack1", new UnstackVertex(0, 2), "pool5")
                .addVertex("unStack2", new UnstackVertex(1, 2), "pool5")
                .addVertex("cosine", new CosineLambdaVertex(), "unStack1", "unStack2")
                .addLayer("out", new LossLayer.Builder().build(), "cosine").setOutputs("out")
                .setInputTypes(InputType.convolutionalFlat(224, 224, 3), InputType.convolutionalFlat(224, 224, 3))
                .build();
        ComputationGraph network = new ComputationGraph(conf);
        network.init();
        return network;
    }

    接下來讀取VGG16的參數,set到我們的新模型裏。爲了代碼方便,我們將LayerName設定的和vgg16裏一樣

String vggLayerNames = "conv1_1,conv1_2,conv2_1,conv2_2,conv3_1,conv3_2,conv3_3,conv4_1,conv4_2,conv4_3,conv5_1,conv5_2,conv5_3"; 
File vggfile = new File("F:/vgg16_dl4j_vggface_inference.v1.zip");
        ComputationGraph vggFace =
                ModelSerializer.restoreComputationGraph(vggfile);
        ComputationGraph model = buildModel();
        for (String name : vggLayerNames.split(",")) {
            model.getLayer(name).setParams(vggFace.getLayer(name).params().dup());
		}

    特徵提取層構造完畢,提取特徵之後,我們要計算距離了,這裏就需要用DL4J實現自定義層,DL4J提供的自動微分可以非常方便的實現自定義層,這裏我們選擇 SameDiffLambdaVertex,原因是這一層不需要任何參數,僅僅計算cosine即可,代碼如下:

public class CosineLambdaVertex extends SameDiffLambdaVertex {

	@Override
	public SDVariable defineVertex(SameDiff sameDiff, VertexInputs inputs) {
		SDVariable input1 = inputs.getInput(0);
		SDVariable input2 = inputs.getInput(1);
		return sameDiff.expandDims(sameDiff.math.cosineSimilarity(input1, input2, 1, 2, 3), 1);
	}

	@Override
	public InputType getOutputType(int layerIndex, InputType... vertexInputs) throws InvalidInputTypeException {
		return InputType.feedForward(1);
	}
}

    說明:計算cosine之後這裏用expandDims將一維張量拓寬成二維,是爲了在LFW數據集中驗證模型的準確性。

    DL4J也提供其他的自定層和自定義節點的實現,一共有如下五種:

  1. Layers: standard single input, single output layers defined using SameDiff. To implement, extend org.deeplearning4j.nn.conf.layers.samediff.SameDiffLayer
  2. Lambda layers: as above, but without any parameters. You only need to implement a single method for these! To implement, extend org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaLayer
  3. Graph vertices: multiple inputs, single output layers usable only in ComputationGraph. To implement: extend org.deeplearning4j.nn.conf.layers.samediff.SameDiffVertex
  4. Lambda vertices: as above, but without any parameters. Again, you only need to implement a single method for these! To implement, extend org.deeplearning4j.nn.conf.layers.samediff.SameDiffLambdaVertex
  5. Output layers: An output layer, for calculating scores/losses. Used as the final layer in a network. To implement, extend org.deeplearning4j.nn.conf.layers.samediff.SameDiffOutputLayer

    案例地址:https://github.com/eclipse/deeplearning4j-examples/tree/master/samediff-examples

   說明文檔:https://github.com/eclipse/deeplearning4j-examples/blob/master/samediff-examples/src/main/java/org/nd4j/examples/samediff/customizingdl4j/README.md

    接下來,還有最後一個問題,輸出層怎麼定義?輸出層不需要任何參數和計算,僅僅將cosine結果輸出即可,dl4j中提供LossLayer天然滿足這種結構,沒有參數,且激活函數爲恆等函數IDENTITY。那麼到此爲止模型構造完成,最終結構如下:


=========================================================================================================
VertexName (VertexType)        nIn,nOut   TotalParams   ParamsShape                  Vertex Inputs       
=========================================================================================================
input1 (InputVertex)           -,-        -             -                            -                   
input2 (InputVertex)           -,-        -             -                            -                   
stack (StackVertex)            -,-        -             -                            [input1, input2]    
conv1_1 (ConvolutionLayer)     3,64       1,792         W:{64,3,3,3}, b:{1,64}       [stack]             
conv1_2 (ConvolutionLayer)     64,64      36,928        W:{64,64,3,3}, b:{1,64}      [conv1_1]           
pool1 (SubsamplingLayer)       -,-        0             -                            [conv1_2]           
conv2_1 (ConvolutionLayer)     64,128     73,856        W:{128,64,3,3}, b:{1,128}    [pool1]             
conv2_2 (ConvolutionLayer)     128,128    147,584       W:{128,128,3,3}, b:{1,128}   [conv2_1]           
pool2 (SubsamplingLayer)       -,-        0             -                            [conv2_2]           
conv3_1 (ConvolutionLayer)     128,256    295,168       W:{256,128,3,3}, b:{1,256}   [pool2]             
conv3_2 (ConvolutionLayer)     256,256    590,080       W:{256,256,3,3}, b:{1,256}   [conv3_1]           
conv3_3 (ConvolutionLayer)     256,256    590,080       W:{256,256,3,3}, b:{1,256}   [conv3_2]           
pool3 (SubsamplingLayer)       -,-        0             -                            [conv3_3]           
conv4_1 (ConvolutionLayer)     256,512    1,180,160     W:{512,256,3,3}, b:{1,512}   [pool3]             
conv4_2 (ConvolutionLayer)     512,512    2,359,808     W:{512,512,3,3}, b:{1,512}   [conv4_1]           
conv4_3 (ConvolutionLayer)     512,512    2,359,808     W:{512,512,3,3}, b:{1,512}   [conv4_2]           
pool4 (SubsamplingLayer)       -,-        0             -                            [conv4_3]           
conv5_1 (ConvolutionLayer)     512,512    2,359,808     W:{512,512,3,3}, b:{1,512}   [pool4]             
conv5_2 (ConvolutionLayer)     512,512    2,359,808     W:{512,512,3,3}, b:{1,512}   [conv5_1]           
conv5_3 (ConvolutionLayer)     512,512    2,359,808     W:{512,512,3,3}, b:{1,512}   [conv5_2]           
pool5 (SubsamplingLayer)       -,-        0             -                            [conv5_3]           
unStack1 (UnstackVertex)       -,-        -             -                            [pool5]             
unStack2 (UnstackVertex)       -,-        -             -                            [pool5]             
cosine (SameDiffGraphVertex)   -,-        -             -                            [unStack1, unStack2]
out (LossLayer)                -,-        0             -                            [cosine]            
---------------------------------------------------------------------------------------------------------
            Total Parameters:  14,714,688
        Trainable Parameters:  14,714,688
           Frozen Parameters:  0
=========================================================================================================

三、在LFW上驗證模型準確率

   LFW數據下載地址:http://vis-www.cs.umass.edu/lfw/,我下載之後放在了F:\facerecognition目錄下。

    構造測試集,分別構造正例和負例,將相同的人臉放一堆,不同的人臉放一堆,代碼如下:

import org.apache.commons.io.FileUtils;

import java.io.File;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.Random;

public class DataTools {
    private static final String PARENT_PATH = "F:/facerecognition";

    public static void main(String[] args) throws IOException {
        File file = new File(PARENT_PATH + "/lfw");
        List<File> list = Arrays.asList(file.listFiles());
        for (int i = 0; i < list.size(); i++) {
            String name = list.get(i).getName();
            File[] faceFileArray = list.get(i).listFiles();
            if (null == faceFileArray) {
                continue;
            }
            //構造正例
            if (faceFileArray.length > 1) {
                String positiveFilePath = PARENT_PATH + "/pairs/1/" + name;
                File positiveFileDir = new File(positiveFilePath);
                if (positiveFileDir.exists()) {
                    positiveFileDir.delete();
                }
                positiveFileDir.mkdir();
                FileUtils.copyFile(faceFileArray[0], new File(positiveFilePath + "/" + faceFileArray[0].getName()));
                FileUtils.copyFile(faceFileArray[1], new File(positiveFilePath + "/" + faceFileArray[1].getName()));
            }
            //構造負例
            String negativeFilePath = PARENT_PATH + "/pairs/0/" + name;
            File negativeFileDir = new File(negativeFilePath);
            if (negativeFileDir.exists()) {
                negativeFileDir.delete();
            }
            negativeFileDir.mkdir();
            FileUtils.copyFile(faceFileArray[0], new File(negativeFilePath + "/" + faceFileArray[0].getName()));
            File[] differentFaceArray = list.get(randomInt(list.size(), i)).listFiles();
            int differentFaceIndex = randomInt(differentFaceArray.length, -1);
            FileUtils.copyFile(differentFaceArray[differentFaceIndex], new File(negativeFilePath + "/" + differentFaceArray[differentFaceIndex].getName()));
        }
    }

    public static int randomInt(int max, int target) {
        Random random = new Random();
        while (true) {
            int result = random.nextInt(max);
            if (result != target) {
                return result;
            }
        }
    }
}

    測試集構造完成之後,構造迭代器,迭代器中讀取圖片用了NativeImageLoader,在《如何利用deeplearning4j中datavec對圖像進行處理》有相關介紹。

public class DataSetForEvaluation implements MultiDataSetIterator {
	private List<FacePair> facePairList;
	private int batchSize;
	private int totalBatches;
	private NativeImageLoader imageLoader;
	private int currentBatch = 0;

	public DataSetForEvaluation(List<FacePair> facePairList, int batchSize) {
		this.facePairList = facePairList;
		this.batchSize = batchSize;
		this.totalBatches = (int) Math.ceil((double) facePairList.size() / batchSize);
		this.imageLoader = new NativeImageLoader(224, 224, 3, new ResizeImageTransform(224, 224));
	}

	@Override
	public boolean hasNext() {
		return currentBatch < totalBatches;
	}

	@Override
	public MultiDataSet next() {
		return next(batchSize);
	}

	@Override
	public MultiDataSet next(int num) {
		int i = currentBatch * batchSize;
		int currentBatchSize = Math.min(batchSize, facePairList.size() - i);
		INDArray input1 = Nd4j.zeros(currentBatchSize, 3,224,224);
		INDArray input2 =  Nd4j.zeros(currentBatchSize, 3,224,224);
		INDArray label = Nd4j.zeros(currentBatchSize, 1);
		for (int j = 0; j < currentBatchSize; j++) {
			try {
				input1.put(new INDArrayIndex[]{NDArrayIndex.point(j),NDArrayIndex.all(),NDArrayIndex.all(),NDArrayIndex.all()}, imageLoader.asMatrix(facePairList.get(i).getList().get(0)).div(255));
				input2.put(new INDArrayIndex[]{NDArrayIndex.point(j),NDArrayIndex.all(),NDArrayIndex.all(),NDArrayIndex.all()},imageLoader.asMatrix(facePairList.get(i).getList().get(1)).div(255));
			} catch (Exception e) {
				e.printStackTrace();
			}
			label.putScalar((long) j, 0, facePairList.get(i).getLabel());
			++i;
		}
		System.out.println(currentBatch);
		++currentBatch;
		return new org.nd4j.linalg.dataset.MultiDataSet(new INDArray[] { input1, input2},
				new INDArray[] { label });
	}

	@Override
	public void setPreProcessor(MultiDataSetPreProcessor preProcessor) {

	}

	@Override
	public MultiDataSetPreProcessor getPreProcessor() {
		return null;
	}

	@Override
	public boolean resetSupported() {
		return true;
	}

	@Override
	public boolean asyncSupported() {
		return false;
	}

	@Override
	public void reset() {
		currentBatch = 0;
	}

}

    接下來可以評估模型的性能了,準確率和精確率還湊合,但F1值有點低。

========================Evaluation Metrics========================
 # of classes:    2
 Accuracy:        0.8973
 Precision:       0.9119
 Recall:          0.6042
 F1 Score:        0.7268
Precision, recall & F1: reported for positive class (class 1 - "1") only


=========================Confusion Matrix=========================
    0    1
-----------
 5651   98 | 0 = 0
  665 1015 | 1 = 1

Confusion matrix format: Actual (rowClass) predicted as (columnClass) N times
==================================================================

四、用SpringBoot將模型封裝成服務

    模型保存之後,就是一堆死參數,怎麼變成線上的服務呢?人臉識別服務分爲兩種1:1和1:N

    1、1:1應用

    典型的1:1應用如手機的人臉識別解鎖,釘釘的人臉識別考勤,這種應用比較簡單,僅僅只需要張三是張三即可,運算量很小。很容易實現

    2、1:N應用

    典型的1:N應用如公安機關的人臉找人,在不知道目標人臉身份的前提下,從海量人臉庫中找到目標人臉是誰。當人臉庫中數據量巨大的時候,計算是一個很大的問題。

如果不要求結構可以實時出來,可以離線用Hadoop MapReduce或者Spark來計算一把,我們需要做的工作僅僅是封裝一個Hive UDF函數、或者MapReduce jar,再或者是Spark RDD編程即可。

    但對於要求計算結果實時性,這個問題不能轉化爲一個索引問題,所以需要設計一種計算框架,可以分佈式的解決全局Max或者全局Top的問題,大致結構如下:

    藍色箭頭表示請求留向,綠色箭頭表示計算結果返回,圖中描述了一個客戶端請求打到了節點Node3上,由Node3轉發請求到其他Node,並行計算。當然如果各個Node內存夠大,可以將整個人臉庫的張量都預熱到內存常駐,加快計算速度。

    當然,本篇博客中並沒有實現並行計算框架,只實現了用springboot將模型包裝成服務。運行FaceRecognitionApplication,訪問http://localhost:8080/index,服務效果如下:

本篇博客的所有代碼:https://gitee.com/lxkm/dl4j-demo/tree/master/face-recognition

五、總結

   本篇博客的主要意圖是介紹如何把DL4J用於實戰,包括pretrained模型參數的獲取、自定義層的實現,自定義迭代器的實現,用springboot包裝層服務等等。

    當然一個人臉識別系統只有一個圖片embedding和求張量距離是不夠的,還應該包括人臉矯正、抵禦AI attack(後面的博客也會介紹如何用DL4J進行 FGSM 攻擊)、人臉關鍵部位特徵提取等等很多精細化的工作要做。當然要把人臉識別做成一個通用SAAS服務,也是有很多工作要做。

   要訓練一個好的人臉識別模型,需要多種loss function的配合,如可以先用SoftMax做分類,再用Center Loss、Triple Loss做微調,後續的博客中將介紹如何用DL4J實現Triple Loss( [公式] ),來訓練人臉識別模型。

快樂源於分享。

   此博客乃作者原創, 轉載請註明出處

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章