國產芯片研究有新突破!低於1nm場效應晶體管器件來了

{"type":"doc","content":[{"type":"blockquote","content":[{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"湖南大學劉淵團隊成功研究出 1nm 以下垂直晶體管器件。"}]}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"heading","attrs":{"align":null,"level":2},"content":[{"type":"text","text":"垂直晶體管器件溝道長度降至 1nm 以下"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"4 月 26 日,《Nature Electronics》上發表了湖南大學劉淵團隊的最新研究。該團隊通過使用範德華金屬集成的方法,成功將基於 MoS2 材料的垂直晶體管器件的溝道長度降低到了單原子層(小於 1 nm)級別。這一重要突破或將芯片性能提升到更高一層臺階。"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"研究文章顯示,垂直晶體管的溝道長度由半導體的厚度決定。然而當前,由於高能金屬化工藝往往會造成接觸區域的損傷,因此短溝道垂直器件極難製造。"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"據 DeepTech 深科技報道,從 1989 年 1000 納米的 486 芯片,到 2020 年 5 納米的海思麒麟 9000 芯片,人類的芯片製造工藝在 30 年間進步迅速。然而,晶體管的物理溝道長度卻在近些年來一直保持在 20 納米的附近,無法隨着工藝節點進一步降低。據瞭解,物理溝道長度是晶體管的一個關鍵性能指標:越短的溝道長度,意味着更好的性能。本次劉淵團隊採用範德華金屬集成技術,創建了溝道長度低至單原子層的 MoS2 垂直晶體管。"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"據瞭解,該方法使用預製的金屬電極,該金屬電極經過機械層壓並轉移到 MoS2\/ 石墨烯垂直異質結構的頂部,從而使垂直場效應晶體管的開 \/ 關比分別爲 26 和 1000,製備出的垂直晶體管溝道長度分別爲 0.65nm 和 3.6 nm。"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"此外,利用掃描隧道顯微鏡和低溫電學測量,劉淵團隊發現,電學性能的改善源於高質量的金屬 - 半導體界面,導致了隧穿電流和費米能級釘扎效應的最小化。團隊認爲,這種方法也可以推廣到其他層狀材料(二硒化鎢和二硫化鎢)中,從而產生具有亞 3nm 的 p 型和 n 型垂直場效應晶體管。"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"公開資料顯示,劉淵是湖南大學物理與微電子科學學院教授、博士生導師,主要從事微納半導體器件的研究。在相關領域發表學術論文 80 餘篇,文章總引用 9000 餘次,入選科睿唯安全球高被引學者,是《麻省理工評論》中國評選出的“35 歲科技創新 35 人”之一。劉淵團隊課題組的目標是探索操作、處理和工程半導體材料和器件的新方案,以實現新的器件功能和前所未有的性能。"}]},{"type":"heading","attrs":{"align":null,"level":2},"content":[{"type":"text","text":"範德華集成帶來的新突破"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"垂直場效應晶體管之所以取得了突破性發展,與二維材料和範德瓦爾斯異質結的興起有關。有學者表示,在未來的集成電路、光電探測器、傳感器等應用中,範德華異質結也將扮演重要的作用。"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"據瞭解,範德華異質結通過相對較弱的範德華相互作用力物理組裝在一起,不僅僅是二維材料,包括零維的納米顆粒,一維的納米線和納米棒,甚至三維材料,任意兩種以範德華力相互作用的材料,都可以將使它們以一定的方式堆疊在一起,形成範德華異質結。這一系列方法可以被統稱爲範德華集成。"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"範德華集成作爲一種通用的低能耗集成方法,可以提供無與倫比的自由,打破了材料集成傳統方法的限制。這種範德華異集成策略適用於任何材料,尤其是適用於具有不同晶體結構、不同電子特性、不同尺寸和維度的材料的柔性集成。"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"這意味着,未來的微電子器件可以藉助範德華集成,在提升性能的同時大大降低製造成本,甚至通過層層堆疊的方式獲得半導體溝道、金屬電極、互聯、光電探測器、存儲器甚至隔離和封裝層。"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","marks":[{"type":"strong"}],"text":"參考鏈接:"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"https:\/\/www.nature.com\/articles\/s41928-021-00566-0"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"http:\/\/www.nanoer.net\/showinfo-32-8183.html"}]},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null}},{"type":"paragraph","attrs":{"indent":0,"number":0,"align":null,"origin":null},"content":[{"type":"text","text":"http:\/\/zhishifenzi.com\/depth\/newsview\/7385?category=physics"}]}]}
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章