CVAE

import torch
import torch.nn as nn
from sklearn.preprocessing import LabelBinarizer
from torch.nn import functional as F

# In[4]
class TextRNN(nn.Module):
    def __init__(self, 
                 input_size = 256, 
                 hidden_size = 128,
                 output_size = 768,
                 n_layers = 2,
                 dropout =  0.5,
                 args = None
                 ):
        super(TextRNN, self).__init__()
        self.rnn = nn.LSTM(input_size = input_size, 
                           hidden_size = hidden_size, 
                           num_layers = n_layers, 
                           bidirectional = True, 
                           batch_first = True, 
                           dropout = dropout)

        self.fc = nn.Linear(hidden_size*2, output_size)     # 雙向RNN,且arg1, arg2
        self.dropout = nn.Dropout(dropout) 

    def forward(self, input_ids):
        # [8, 80, 300] 
        arg_out = self.dropout(input_ids)
        # out: [batch, seq_len, hidden_dim * 2]
        # hideen: [batch, num_layers * 2, hidden_dim]
        # cell/c: [batch, num_layers * 2, hidden_dim]
        arg_out, (_, _) = self.rnn(arg_out)                                

        out = self.fc(arg_out)                                         # [8, 2]   

        return out

# In[1]
class CVAEModel(nn.Module):
    def __init__(self, 
                input_size=256,
                hidden_size=256,
                output_size=768
                ):
        super(CVAEModel, self).__init__()

        # [8, 256, 768]
        self.rnn01 = TextRNN(input_size=input_size, hidden_size = 128, output_size = 768)
        self.rnn02 = TextRNN(input_size=input_size, hidden_size = 128, output_size = 768)
        # 768 -> 256
        self.fc11 = nn.Linear(hidden_size, hidden_size // 2)
        self.fc12 = nn.Linear(hidden_size, hidden_size // 2)

        self.fc21 = nn.Linear(hidden_size // 2, hidden_size) 
        self.fc22 = nn.Linear(hidden_size, hidden_size) 

        self.layernorm = nn.LayerNorm(hidden_size)
        self.lb = LabelBinarizer()
    
    # 將標籤進行one-hot編碼
    def to_categrical(self, y):
        device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
        y_n = y.cpu().detach()
        self.lb.fit(list(range(0, 2)))
        y_one_hot = self.lb.transform(y_n)
        y_one_hot = torch.FloatTensor(y_one_hot).to(device)
        return y_one_hot

    def encode(self, x, y=None, Training=False):
        if Training:
            con = x
            # y_c = self.to_categrical(y)
            # y_c = y_c.unsqueeze(1)
            # # 輸入樣本和標籤y的one-hot向量連接
            # con = con + y_c
            out = self.rnn01(con)
            return F.relu(self.fc11(out)), F.relu(self.fc12(out))
        else:
            return F.relu(self.rnn01(x))
        
    # 再參數化
    def reparameterize(self, mu, logvar):
        std = torch.exp(0.5 * logvar)
        eps = torch.randn_like(std)
        return eps.mul(std).add_(mu)

    def decode(self, z, y=None, Training=False):   
        con = z
        y_c = self.to_categrical(y)
        y_c = y_c.unsqueeze(1)
        con = con + y_c
        out = self.fc21(con)
        out = self.rnn02(out)  # 在這修改
        return F.relu(out)
        

    @classmethod
    def loss_function(cls, recon_x, x, mu, logvar):
        bz = x.shape[0]
        # print(recon_x.shape, x.shape)
        # recon_x, x = recon_x.view(bz, -1), x.view(-1)
        BCE = nn.MSELoss()(recon_x, x)
        # BCE = nn.CrossEntropyLoss(recon_x, x)
        # see Appendix B from VAE paper:
        # Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
        # https://arxiv.org/abs/1312.6114
        # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
        KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())
        return BCE + KLD

    def forward(self, x, y=None, Training=False):   
        # 訓練 CVAE
        if Training:
            # Encode 
            mu, logvar = self.encode(x, y, Training)
            # 再參數化
            z = self.reparameterize(mu, logvar)
            # Decode
            out = self.decode(z, y, Training)
            
            return out, mu, logvar
        else:
            out = self.encode(x)
            return out

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch RoBERTa model. """

import math
import warnings

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN, gelu
from transformers.configuration_roberta import RobertaConfig
from transformers.file_utils import (
    add_code_sample_docstrings,
    add_start_docstrings,
    add_start_docstrings_to_callable,
    replace_return_docstrings,
)
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPooling,
    CausalLMOutput,
    MaskedLMOutput,
    MultipleChoiceModelOutput,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutput,
    TokenClassifierOutput,
)
from transformers.modeling_utils import (
    PreTrainedModel,
    apply_chunking_to_forward,
    find_pruneable_heads_and_indices,
    prune_linear_layer,
)

from .CVAEModel import CVAEModel
from .Attention import AttentionInArgs
from .GATModel import GAT

import logging

logger = logging.getLogger(__name__)

_CONFIG_FOR_DOC = "RobertaConfig"
_TOKENIZER_FOR_DOC = "RobertaTokenizer"

ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "roberta-base",
    "roberta-large",
    "roberta-large-mnli",
    "distilroberta-base",
    "roberta-base-openai-detector",
    "roberta-large-openai-detector",
    # See all RoBERTa models at https://huggingface.co/models?filter=roberta
]


class RobertaEmbeddings(nn.Module):
    """
    Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
    """

    # Copied from transformers.modeling_bert.BertEmbeddings.__init__
    def __init__(self, config):
        super().__init__()
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

        # position_ids (1, len position emb) is contiguous in memory and exported when serialized
        self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))

        # End copy
        self.padding_idx = config.pad_token_id
        self.position_embeddings = nn.Embedding(
            config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
        )

    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
        if position_ids is None:
            if input_ids is not None:
                # Create the position ids from the input token ids. Any padded tokens remain padded.
                position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device)
            else:
                position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)

        # Copied from transformers.modeling_bert.BertEmbeddings.forward
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]

        if position_ids is None:
            position_ids = self.position_ids[:, :seq_length]

        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)

        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

        embeddings = inputs_embeds + position_embeddings + token_type_embeddings
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings

    def create_position_ids_from_inputs_embeds(self, inputs_embeds):
        """We are provided embeddings directly. We cannot infer which are padded so just generate
        sequential position ids.

        :param torch.Tensor inputs_embeds:
        :return torch.Tensor:
        """
        input_shape = inputs_embeds.size()[:-1]
        sequence_length = input_shape[1]

        position_ids = torch.arange(
            self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
        )
        return position_ids.unsqueeze(0).expand(input_shape)


# Copied from transformers.modeling_bert.BertSelfAttention with Bert->Roberta
class RobertaSelfAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        mixed_query_layer = self.query(hidden_states)

        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
        if encoder_hidden_states is not None:
            mixed_key_layer = self.key(encoder_hidden_states)
            mixed_value_layer = self.value(encoder_hidden_states)
            attention_mask = encoder_attention_mask
        else:
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
        return outputs


# Copied from transformers.modeling_bert.BertSelfOutput
class RobertaSelfOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.modeling_bert.BertAttention with Bert->Roberta
class RobertaAttention(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.self = RobertaSelfAttention(config)
        self.output = RobertaSelfOutput(config)
        self.pruned_heads = set()

    def prune_heads(self, heads):
        if len(heads) == 0:
            return
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )

        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)

        # Update hyper params and store pruned heads
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
        self.pruned_heads = self.pruned_heads.union(heads)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        self_outputs = self.self(
            hidden_states,
            attention_mask,
            head_mask,
            encoder_hidden_states,
            encoder_attention_mask,
            output_attentions,
        )
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


# Copied from transformers.modeling_bert.BertIntermediate
class RobertaIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


# Copied from transformers.modeling_bert.BertOutput
class RobertaOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


# Copied from transformers.modeling_bert.BertLayer with Bert->Roberta
class RobertaLayer(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.chunk_size_feed_forward = config.chunk_size_feed_forward
        self.seq_len_dim = 1
        self.attention = RobertaAttention(config)
        self.is_decoder = config.is_decoder
        self.add_cross_attention = config.add_cross_attention
        if self.add_cross_attention:
            assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
            self.crossattention = RobertaAttention(config)
        self.intermediate = RobertaIntermediate(config)
        self.output = RobertaOutput(config)

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
    ):
        self_attention_outputs = self.attention(
            hidden_states,
            attention_mask,
            head_mask,
            output_attentions=output_attentions,
        )
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights

        if self.is_decoder and encoder_hidden_states is not None:
            assert hasattr(
                self, "crossattention"
            ), f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
            cross_attention_outputs = self.crossattention(
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                output_attentions,
            )
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:]  # add cross attentions if we output attention weights

        layer_output = apply_chunking_to_forward(
            self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
        )
        outputs = (layer_output,) + outputs
        return outputs

    def feed_forward_chunk(self, attention_output):
        intermediate_output = self.intermediate(attention_output)
        layer_output = self.output(intermediate_output, attention_output)
        return layer_output


# Copied from transformers.modeling_bert.BertEncoder with Bert->Roberta
class RobertaEncoder(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.layer = nn.ModuleList([RobertaLayer(config) for _ in range(config.num_hidden_layers)])

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=False,
        output_hidden_states=False,
        return_dict=False,
    ):
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        for i, layer_module in enumerate(self.layer):
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            layer_head_mask = head_mask[i] if head_mask is not None else None

            if getattr(self.config, "gradient_checkpointing", False):

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    layer_head_mask,
                    encoder_hidden_states,
                    encoder_attention_mask,
                    output_attentions,
                )
            hidden_states = layer_outputs[0]
            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
        return BaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
        )


# Copied from transformers.modeling_bert.BertPooler
class RobertaPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class RobertaPreTrainedModel(PreTrainedModel):
    """An abstract class to handle weights initialization and
    a simple interface for downloading and loading pretrained models.
    """

    config_class = RobertaConfig
    base_model_prefix = "roberta"

    # Copied from transformers.modeling_bert.BertPreTrainedModel._init_weights
    def _init_weights(self, module):
        """ Initialize the weights """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


ROBERTA_START_DOCSTRING = r"""

    This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
    methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
    pruning heads etc.)

    This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ subclass.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
    usage and behavior.

    Parameters:
        config (:class:`~transformers.RobertaConfig`): Model configuration class with all the parameters of the
            model. Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

ROBERTA_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using :class:`~transformers.RobertaTokenizer`.
            See :meth:`transformers.PreTrainedTokenizer.encode` and
            :meth:`transformers.PreTrainedTokenizer.__call__` for details.

            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            `What are attention masks? <../glossary.html#attention-mask>`__
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``:

            - 0 corresponds to a `sentence A` token,
            - 1 corresponds to a `sentence B` token.

            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.

            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:

            - 1 indicates the head is **not masked**,
            - 0 indicates the head is **masked**.

        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
            This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
            vectors than the model's internal embedding lookup matrix.
        output_attentions (:obj:`bool`, `optional`):
            Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
            tensors for more detail.
        output_hidden_states (:obj:`bool`, `optional`):
            Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
            more detail.
        return_dict (:obj:`bool`, `optional`):
            Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
    ROBERTA_START_DOCSTRING,
)
class RobertaModel(RobertaPreTrainedModel):
    """

    The model can behave as an encoder (with only self-attention) as well
    as a decoder, in which case a layer of cross-attention is added between
    the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
    Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.

    To behave as an decoder the model needs to be initialized with the
    :obj:`is_decoder` argument of the configuration set to :obj:`True`.
    To be used in a Seq2Seq model, the model needs to initialized with both :obj:`is_decoder`
    argument and :obj:`add_cross_attention` set to :obj:`True`; an
    :obj:`encoder_hidden_states` is then expected as an input to the forward pass.

    .. _`Attention is all you need`:
        https://arxiv.org/abs/1706.03762

    """

    authorized_missing_keys = [r"position_ids"]

    # Copied from transformers.modeling_bert.BertModel.__init__ with Bert->Roberta
    def __init__(self, config, add_pooling_layer=True):
        super().__init__(config)
        self.config = config

        self.embeddings = RobertaEmbeddings(config)
        self.encoder = RobertaEncoder(config)

        self.pooler = RobertaPooler(config) if add_pooling_layer else None

        self.init_weights()

    def get_input_embeddings(self):
        return self.embeddings.word_embeddings

    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value

    def _prune_heads(self, heads_to_prune):
        """Prunes heads of the model.
        heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        See base class PreTrainedModel
        """
        for layer, heads in heads_to_prune.items():
            self.encoder.layer[layer].attention.prune_heads(heads)

    @add_start_docstrings_to_callable(ROBERTA_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="roberta-base",
        output_type=BaseModelOutputWithPooling,
        config_class=_CONFIG_FOR_DOC,
    )
    # Copied from transformers.modeling_bert.BertModel.forward
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
            if the model is configured as a decoder.
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask
            is used in the cross-attention if the model is configured as a decoder.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
        if token_type_ids is None:
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)

        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = encoder_outputs[0]
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None

        if not return_dict:
            return (sequence_output, pooled_output) + encoder_outputs[1:]

        return BaseModelOutputWithPooling(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )


@add_start_docstrings(
    """RoBERTa Model with a `language modeling` head on top for CLM fine-tuning. """, ROBERTA_START_DOCSTRING
)
class RobertaForCausalLM(RobertaPreTrainedModel):
    authorized_missing_keys = [r"position_ids", r"predictions.decoder.bias"]
    authorized_unexpected_keys = [r"pooler"]

    def __init__(self, config):
        super().__init__(config)

        if not config.is_decoder:
            logger.warning("If you want to use `RobertaLMHeadModel` as a standalone, add `is_decoder=True.`")

        self.roberta = RobertaModel(config, add_pooling_layer=False)
        self.lm_head = RobertaLMHead(config)

        self.init_weights()

    def get_output_embeddings(self):
        return self.lm_head.decoder

    @add_start_docstrings_to_callable(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @replace_return_docstrings(output_type=CausalLMOutput, config_class=_CONFIG_FOR_DOC)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
    ):
        r"""
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
            if the model is configured as a decoder.
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask
            is used in the cross-attention if the model is configured as a decoder.
            Mask values selected in ``[0, 1]``:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for computing the left-to-right language modeling loss (next word prediction).
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with
            labels in ``[0, ..., config.vocab_size]``

        Returns:

        Example::

            >>> from transformers import RobertaTokenizer, RobertaForCausalLM, RobertaConfig
            >>> import torch

            >>> tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
            >>> config = RobertaConfig.from_pretrained("roberta-base", return_dict=True)
            >>> config.is_decoder = True
            >>> model = RobertaForCausalLM.from_pretrained('roberta-base', config=config)

            >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
            >>> outputs = model(**inputs)

            >>> prediction_logits = outputs.logits
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        lm_loss = None
        if labels is not None:
            # we are doing next-token prediction; shift prediction scores and input ids by one
            shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
            labels = labels[:, 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((lm_loss,) + output) if lm_loss is not None else output

        return CausalLMOutput(
            loss=lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
        input_shape = input_ids.shape

        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_shape)

        return {"input_ids": input_ids, "attention_mask": attention_mask}


@add_start_docstrings("""RoBERTa Model with a `language modeling` head on top. """, ROBERTA_START_DOCSTRING)
class RobertaForMaskedLM(RobertaPreTrainedModel):
    authorized_missing_keys = [r"position_ids", r"predictions.decoder.bias"]
    authorized_unexpected_keys = [r"pooler"]

    def __init__(self, config):
        super().__init__(config)

        if config.is_decoder:
            logger.warning(
                "If you want to use `RobertaForMaskedLM` make sure `config.is_decoder=False` for "
                "bi-directional self-attention."
            )

        self.roberta = RobertaModel(config, add_pooling_layer=False)
        self.lm_head = RobertaLMHead(config)

        self.init_weights()

    def get_output_embeddings(self):
        return self.lm_head.decoder

    @add_start_docstrings_to_callable(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="roberta-base",
        output_type=MaskedLMOutput,
        config_class=_CONFIG_FOR_DOC,
        mask="<mask>",
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        **kwargs
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
            Labels for computing the masked language modeling loss.
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
            in ``[0, ..., config.vocab_size]``
        kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
            Used to hide legacy arguments that have been deprecated.
        """
        if "masked_lm_labels" in kwargs:
            warnings.warn(
                "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
                FutureWarning,
            )
            labels = kwargs.pop("masked_lm_labels")
        assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        prediction_scores = self.lm_head(sequence_output)

        masked_lm_loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (prediction_scores,) + outputs[2:]
            return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output

        return MaskedLMOutput(
            loss=masked_lm_loss,
            logits=prediction_scores,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


class RobertaLMHead(nn.Module):
    """Roberta Head for masked language modeling."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))

        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

    def forward(self, features, **kwargs):
        x = self.dense(features)
        x = gelu(x)
        x = self.layer_norm(x)

        # project back to size of vocabulary with bias
        x = self.decoder(x)

        return x


class RobertaClassificationHead(nn.Module):
    """Head for sentence-level classification tasks."""

    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

    def forward(self, features, **kwargs):
        x = features[:, 0, :]  # take <s> token (equiv. to [CLS])
        x = self.dropout(x)
        x = self.dense(x)
        x = torch.tanh(x)
        x = self.dropout(x)
        x = self.out_proj(x)
        return x



def create_position_ids_from_input_ids(input_ids, padding_idx):
    """Replace non-padding symbols with their position numbers. Position numbers begin at
    padding_idx+1. Padding symbols are ignored. This is modified from fairseq's
    `utils.make_positions`.

    :param torch.Tensor x:
    :return torch.Tensor:
    """
    # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
    mask = input_ids.ne(padding_idx).int()
    incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask
    return incremental_indices.long() + padding_idx



@add_start_docstrings(
    """RoBERTa Model transformer with a sequence classification/regression head on top (a linear layer
    on top of the pooled output) e.g. for GLUE tasks. """,
    ROBERTA_START_DOCSTRING,
)
class RobertaPDTBModel(RobertaPreTrainedModel):
    authorized_missing_keys = [r"position_ids"]

    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels

        self.roberta = RobertaModel(config, add_pooling_layer=False)
        self.classifier = RobertaClassificationHead(config)

        self.laynorm = nn.LayerNorm(config.hidden_size)

        self.cvae = CVAEModel(config.hidden_size, config.hidden_size)

        self.init_weights()

    @add_start_docstrings_to_callable(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint="roberta-base",
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        Training=False,
        do_cvae=0,              # 先做幾次cvae
        args=None
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.roberta(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        sequence_output = outputs[0]
        

        # 在這修改代碼
        sequence_output = self.laynorm(sequence_output)

        # logger.info('seq.shape: ' + str(sequence_output.shape))
        if do_cvae > 0:
            # 訓練CVAE
            out, mu, logvar = self.cvae(x=sequence_output, y=labels, Training=True)
            # 原始數據+con
            y_c = self.cvae.to_categrical(labels)
            y_c = y_c.unsqueeze(1)
            # # 輸入樣本和標籤y的one-hot向量連接
            con = sequence_output + y_c
            # cvae的loss,seq
            cvae_loss = CVAEModel.loss_function(recon_x=out, x=con, mu=mu, logvar=logvar)
            sequence_output = self.cvae(sequence_output)
        else:
            # 訓練完畢,使用訓練好的編碼器
            sequence_output = self.cvae(sequence_output)

        logits = self.classifier(sequence_output)
        # logger.info('logits: ' + str(logits) + str(logits.shape))
        # logger.info('label: ' + str(labels) + str(labels.shape))

        loss = None
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                # [8, 2], [8]
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
                # 多任務?
                if do_cvae > 0:
                    loss = loss + args.cvae_beta * cvae_loss

        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )



發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章