【內存管理】CMA內存分配器(Contiguous Memory Allocator)【轉】

轉自:https://www.cnblogs.com/yibuyibu/p/14806878.html

什麼是CMA
參考這兩篇博文,寫得很好:
http://www.wowotech.net/memory_management/cma.html
https://www.cnblogs.com/LoyenWang/p/12182594.html
https://biscuitos.github.io/blog/CMA/
CMA的初始化創建 * 默認cma創建(dma_contiguous_default_area),兩種方式: 通過cmdline傳遞的參數"cma=",然後在kernel初始化階段解析參數,並調用start_kernel()->setup_arch()->arm64_memblock_init()->dma_contiguous_reserve()完成創建(android中一般不通過cmdline傳遞): static phys_addr_t size_cmdline = -1; static phys_addr_t base_cmdline; static phys_addr_t limit_cmdline; //解析cmdline傳遞的cma參數 static int __init early_cma(char *p) { pr_debug("%s(%s)\n", __func__, p); size_cmdline = memparse(p, &p); if (*p != '@') return 0; base_cmdline = memparse(p + 1, &p); if (*p != '-') { limit_cmdline = base_cmdline + size_cmdline; return 0; } limit_cmdline = memparse(p + 1, &p); return 0; } early_param("cma", early_cma); 通過dts中配置cma節點,屬性中包含"shared-dma-pool"以及"linux,cma-default",在kernel初始化階段,通過調用start_kernel()->setup_arch()->arm64_memblock_init()->early_init_fdt_scan_reserved_mem()->fdt_init_reserved_mem()->__reserved_mem_init_node()完成對默認cma的創建和初始化: static int __init __reserved_mem_init_node(struct reserved_mem *rmem) { extern const struct of_device_id __reservedmem_of_table[]; const struct of_device_id *i; //__reservedmem_of_table是初始化中的一個section段,通過RESERVEDMEM_OF_DECLARE定義的都會被鏈接到這個段中 //參考:https://blog.csdn.net/rikeyone/article/details/79975138 for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) { reservedmem_of_init_fn initfn = i->data; const char *compat = i->compatible; if (!of_flat_dt_is_compatible(rmem->fdt_node, compat)) continue; if (initfn(rmem) == 0) { pr_info("initialized node %s, compatible id %s\n", rmem->name, compat); return 0; } } return -ENOENT; } //dma-contiguous.c文件中定義了該默認cma的創建回調。 //如果dts中沒有配置,那該回調也不會執行。 //參考:https://blog.csdn.net/rikeyone/article/details/79975138 RESERVEDMEM_OF_DECLARE(cma, "shared-dma-pool", rmem_cma_setup); 默認cma似乎在好些android平臺上都沒有創建。 *其他CMA區創建 其他CMA區域創建都應該類似默認cma一樣,通過RESERVEDMEM_OF_DECLARE接口定義一個結構體變量在__reservedmem_of_table段中,開機啓動時就會調用對應的initfn完成初始化,同時還需要在dts中配置對應的屬性節點。 所有CMA的創建最終都會調用cma_init_reserved_mem()函數: 主要從cma全局數組cma_areas中分配一個cma實體並將傳遞過來的參數用於初始化該cam實體。 初始化參數包括,cma的name、起始頁框號base_pfn,總共頁數count,以及每個bit代表多少個頁2^(order_per_bit)。 更新全局變量totalcma_pages,記錄總的cma頁面數量,在meminfo中CmaTotal就是這個值。 int __init cma_init_reserved_mem(phys_addr_t base, phys_addr_t size, unsigned int order_per_bit, const char *name, struct cma **res_cma) { struct cma *cma; phys_addr_t alignment; /* Sanity checks */ //判斷cma數量是否已經滿了,因爲cma_areas數組指定了系統中總的cma數量,通過內核宏控制 if (cma_area_count == ARRAY_SIZE(cma_areas)) { pr_err("Not enough slots for CMA reserved regions!\n"); return -ENOSPC; } //判斷該cma內存區間是否與reversed中的某個區間是交叉的?爲什麼要這樣判斷? if (!size || !memblock_is_region_reserved(base, size)) return -EINVAL; /* ensure minimal alignment required by mm core */ //對齊方式按pageblock,也就是1024頁(4M) alignment = PAGE_SIZE << max_t(unsigned long, MAX_ORDER - 1, pageblock_order); /* alignment should be aligned with order_per_bit */ //判斷對齊方式alignment本身的大小與單個bit表示的內存大小,是否對齊 if (!IS_ALIGNED(alignment >> PAGE_SHIFT, 1 << order_per_bit)) return -EINVAL; //判斷base和size以aligment方式對齊後,得到的值是否還是原來的值,也就是判斷base和size是否基於alignment對齊 if (ALIGN(base, alignment) != base || ALIGN(size, alignment) != size) return -EINVAL; /* * Each reserved area must be initialised later, when more kernel * subsystems (like slab allocator) are available. */ //1. memblock是系統最初的內存管理器,分爲memory type和reserved type,CMA最開始就屬於reserved type //2. 運行到這裏,就表示memblock已經建立,並且buddy還沒建立,CMA在buddy前建立OK //3. CMA建立OK後,接着memblock中的memory type會釋放給buddy,reserved type則不會 //4. CMA作爲特殊的reserved type,最終通過系統初始化調用cma_init_reserved_areas,將內存歸還給buddy //從cma_areas數組中分配一個cma對象 cma = &cma_areas[cma_area_count]; if (name) { cma->name = name; } else { cma->name = kasprintf(GFP_KERNEL, "cma%d\n", cma_area_count); if (!cma->name) return -ENOMEM; } cma->base_pfn = PFN_DOWN(base); //起始頁號 cma->count = size >> PAGE_SHIFT; //總共頁面數 cma->order_per_bit = order_per_bit; //一個bit代表的階數 *res_cma = cma; cma_area_count++; totalcma_pages += (size / PAGE_SIZE); //totalcma_pages記錄總的cma頁面數量,在meminfo中CmaTotal就是這個值 return 0; } 到這裏,只是完成對cma內存的保留和初始化,cma區最終還需要釋放給buddy。 CMA區域釋放給buddy 釋放也是在kernel初始化過程中,會比cma的創建稍晚一些,是通過cma_init_reserved_areas接口完成的所有cma的初始化並將內存返還給buddy。 core_initcall(cma_init_reserved_areas)定義在kernel的init段中,通過start_kernel()->rest_init()創建內核線程kernel_init->kernel_init_freeable()->do_basic_setup()->do_initcalls()完成對各個init level的初始化。core init屬於level1。 cma_init_reserved_areas()函數,遍歷當前cma全局數組中已經分配的cma實體,通過調用cma_activate_area函數完成激活初始化,同時將內存釋放給buddy: static int __init cma_init_reserved_areas(void) { int i; for (i = 0; i < cma_area_count; i++) { int ret = cma_activate_area(&cma_areas[i]); if (ret) return ret; } return 0; } core_initcall(cma_init_reserved_areas); cma_activate_area()函數: 以pageblock爲單位,設置migrate type爲MIGRATE_CMA,然後將其整個pageblock包含的頁全部釋放給buddy,並更新整個系統的可用內存總數 static int __init cma_activate_area(struct cma *cma) { int bitmap_size = BITS_TO_LONGS(cma_bitmap_maxno(cma)) * sizeof(long); unsigned long base_pfn = cma->base_pfn, pfn = base_pfn; //i代表有多少個page block,一般一個pageblock是1024頁 unsigned i = cma->count >> pageblock_order; struct zone *zone; //cma也是通過bitmap來管理,每個bit代表多大,由order_per_bit決定。 //默認的cma的order_per_bit爲0,一個bit代表2^0個page。 //分配bitmap cma->bitmap = kzalloc(bitmap_size, GFP_KERNEL); if (!cma->bitmap) return -ENOMEM; WARN_ON_ONCE(!pfn_valid(pfn)); zone = page_zone(pfn_to_page(pfn)); //以pageblock遍歷, do { unsigned j; //記錄當前pageblock的起始頁 base_pfn = pfn; //判斷當前pageblock中的所有頁面是否滿足要求:合法的頁號、都在同一個zone中 for (j = pageblock_nr_pages; j; --j, pfn++) { WARN_ON_ONCE(!pfn_valid(pfn)); /* * alloc_contig_range requires the pfn range * specified to be in the same zone. Make this * simple by forcing the entire CMA resv range * to be in the same zone. */ if (page_zone(pfn_to_page(pfn)) != zone) goto not_in_zone; } //將當前pageblock初始化並釋放給buddy init_cma_reserved_pageblock(pfn_to_page(base_pfn)); } while (--i); mutex_init(&cma->lock); #ifdef CONFIG_CMA_DEBUGFS INIT_HLIST_HEAD(&cma->mem_head); spin_lock_init(&cma->mem_head_lock); #endif return 0; not_in_zone: pr_err("CMA area %s could not be activated\n", cma->name); kfree(cma->bitmap); cma->count = 0; return -EINVAL; } cma_activate_area()->init_cma_reserved_pageblock()函數設置pageblock類型並釋放內存給buddy: void __init init_cma_reserved_pageblock(struct page *page) { unsigned i = pageblock_nr_pages; struct page *p = page; do { //清除頁描述flag中的PG_Reserved標誌位 __ClearPageReserved(p); //設置page->_refcount = 0 set_page_count(p, 0); } while (++p, --i); //設置pageblock的遷移類型爲MIGRATE_CMA set_pageblock_migratetype(page, MIGRATE_CMA); if (pageblock_order >= MAX_ORDER) { i = pageblock_nr_pages; p = page; do { set_page_refcounted(p); __free_pages(p, MAX_ORDER - 1); p += MAX_ORDER_NR_PAGES; } while (i -= MAX_ORDER_NR_PAGES); } else { //設置page->_refcount = 1 set_page_refcounted(page); //釋放pages到buddy中,以pageblock釋放,order爲10 __free_pages(page, pageblock_order); } //調整對應zone中的managed_pages可管理頁面數,即加上一個pageblock數量 //調整總的內存數量totalram_pages,即加上一個pageblock數量 adjust_managed_page_count(page, pageblock_nr_pages); } CMA的分配 CMA分配通過統一接口cma_alloc函數,會從bitmap中先查找滿足要求的連續bit,然後通過alloc_contig_range實現分配,成功後的頁面會從buddy總摘出來: struct page *cma_alloc(struct cma *cma, size_t count, unsigned int align, gfp_t gfp_mask) { unsigned long mask, offset; unsigned long pfn = -1; unsigned long start = 0; unsigned long bitmap_maxno, bitmap_no, bitmap_count; struct page *page = NULL; int ret = -ENOMEM; if (!cma || !cma->count) return NULL; pr_debug("%s(cma %p, count %zu, align %d)\n", __func__, (void *)cma, count, align); if (!count) return NULL; mask = cma_bitmap_aligned_mask(cma, align); offset = cma_bitmap_aligned_offset(cma, align); bitmap_maxno = cma_bitmap_maxno(cma); bitmap_count = cma_bitmap_pages_to_bits(cma, count); if (bitmap_count > bitmap_maxno) return NULL; for (;;) { mutex_lock(&cma->lock); //1. 從cma->bitmap中查找連續bitmap_count個爲0的bit bitmap_no = bitmap_find_next_zero_area_off(cma->bitmap, bitmap_maxno, start, bitmap_count, mask, offset); if (bitmap_no >= bitmap_maxno) { mutex_unlock(&cma->lock); break; } //2. 將查找到的連續bit設置爲1,表示內存被分配佔用 bitmap_set(cma->bitmap, bitmap_no, bitmap_count); /* * It's safe to drop the lock here. We've marked this region for * our exclusive use. If the migration fails we will take the * lock again and unmark it. */ mutex_unlock(&cma->lock); //3. 計算分配的起始頁的頁號 pfn = cma->base_pfn + (bitmap_no << cma->order_per_bit); mutex_lock(&cma_mutex); //4. 分配從起始頁開始的連續count個頁,分配的migrate type爲CMA類型 ret = alloc_contig_range(pfn, pfn + count, MIGRATE_CMA, gfp_mask); mutex_unlock(&cma_mutex); //5. 分配成功,就返回起始page if (ret == 0) { page = pfn_to_page(pfn); break; } cma_clear_bitmap(cma, pfn, count); if (ret != -EBUSY) break; pr_debug("%s(): memory range at %p is busy, retrying\n", __func__, pfn_to_page(pfn)); /* try again with a bit different memory target */ start = bitmap_no + mask + 1; } trace_cma_alloc(pfn, page, count, align); if (ret && !(gfp_mask & __GFP_NOWARN)) { pr_info("%s: alloc failed, req-size: %zu pages, ret: %d\n", __func__, count, ret); cma_debug_show_areas(cma); } pr_debug("%s(): returned %p\n", __func__, page); return page; } CMA的釋放 釋放操作也很清晰,通過cma_release函數實現,會將頁面釋放回buddy系統,並將cma的bitmap相應bit清零: bool cma_release(struct cma *cma, const struct page *pages, unsigned int count) { unsigned long pfn; if (!cma || !pages) return false; pr_debug("%s(page %p)\n", __func__, (void *)pages); pfn = page_to_pfn(pages); if (pfn < cma->base_pfn || pfn >= cma->base_pfn + cma->count) return false; VM_BUG_ON(pfn + count > cma->base_pfn + cma->count); //釋放回buddy free_contig_range(pfn, count); //清零bit位,表示對應cma內存可用 cma_clear_bitmap(cma, pfn, count); trace_cma_release(pfn, pages, count); return true; } CMA與buddy 後續補充

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章