perf_event_open学习 —— 缓冲区管理

参考

内核版本

Linux 6.5

作者

[email protected]

正文

初始化

应用调用perf_event_open系统调用让内核创建perf_event时,内核创建了一个匿名文件,这个文件的file结构体的fops是perf_fops

static const struct file_operations perf_fops = {
	.llseek			= no_llseek,
	.release		= perf_release,
	.read			= perf_read,
	.poll			= perf_poll,
	.unlocked_ioctl		= perf_ioctl,
	.compat_ioctl		= perf_compat_ioctl,
	.mmap			= perf_mmap,
	.fasync			= perf_fasync,
};

应用在得到fd后,通过调用mmap来让内核分配ring buffer,用perf_buffer结构体表示,并且将ring buffer也映射给用户,后续应用和内核就可以通过共享内存的方式实现数据共享。跟这段缓冲区对应的vma的vm_ops是perf_mmap_vmops.

内核对mmap的长度的规定是必须满足1+2^n个页,其中第1个页只是用来存放结构体perf_event_mmap_page,其中存放的是元信息,后面的2^n个页用来存放具体的采样数据。

如果应用在mmap时设置了可写,那么perf_buffer的overwrite为0,表示内核在向缓冲区写数据时与需要跟应用进行同步,防止出现内容被覆盖的情况,当然如果应用读取不及时,会造成缓冲区满的情况,此时新数据将无法写入,发生overflow。

perf_mmap中分配ring buffer的实现如下:

	struct perf_buffer *rb;
	rb = rb_alloc(nr_pages,
				  event->attr.watermark ? event->attr.wakeup_watermark : 0,
				  event->cpu, flags);

	ring_buffer_attach(event, rb);
	perf_event_update_time(event);
	perf_event_init_userpage(event);
	perf_event_update_userpage(event);

调用rb_alloc分配出perf_buffer后,在ring_buffer_attach中会将rb赋值给perf_event的rb成员,分配缓冲区有两种实现方法,在编译时决定,一种是一页一页分配,这种方式会出现页之间的虚拟地址不连续,所以需要通过data_pages[]数组来记录每个页的地址,页的数量记录在rb->nr_pages中;第二种是调用vmalloc一次分配完毕,这样所有这些页的虚拟地址是连续的,此时nr_pages固定设置为1,即只需要data_pages[0],记录首地址即可,下图这种是连续的情况:

image

此外,内核调用perf_event_alloc来分配perf_event时,如果没有指定overflow_handler处理函数,那么内核会根据应用传递的参数设置默认的handler,假如应用没有要求按backwrite的写方向,那么handler就是perf_event_output_forward。

内核写

perf_event_output_forward为例:

void
perf_event_output_forward(struct perf_event *event,
			 struct perf_sample_data *data,
			 struct pt_regs *regs)
{
	__perf_event_output(event, data, regs, perf_output_begin_forward);
}

__perf_event_output

static __always_inline int
__perf_event_output(struct perf_event *event,
		    struct perf_sample_data *data,
		    struct pt_regs *regs,
		    int (*output_begin)(struct perf_output_handle *,
					struct perf_sample_data *,
					struct perf_event *,
					unsigned int))
{
	struct perf_output_handle handle;
	struct perf_event_header header;
	int err;

	/* protect the callchain buffers */
	rcu_read_lock();

	// 根据perf_event的设置以及当前的上下文来填充perf_sample_data,此时还没进ring buffer缓冲区
	perf_prepare_sample(data, event, regs);

	// 填充perf_event_header,在缓冲区里内容是通过一个个以perf_event_header为首的结构体组成
	perf_prepare_header(&header, data, event, regs);

	// perf_output_begin_forward,更新handle,其中记录的是要写入的地址
	err = output_begin(&handle, data, event, header.size);
	if (err)
		goto exit;

	// 根据handle中记录的位置信息,将header、data等写入到缓冲区
	perf_output_sample(&handle, &header, data, event);

	// 更新data_head,同时处理唤醒
	perf_output_end(&handle);

exit:
	rcu_read_unlock();
	return err;
}

perf_output_begin_forward

这个函数的作用是更新handle中操作缓冲区的成员,如addr表示要写入的位置,size表示剩余空间大小,page表示要写入的page的数组索引号。

  • perf_output_begin_forward
int perf_output_begin_forward(struct perf_output_handle *handle,
			      struct perf_sample_data *data,
			      struct perf_event *event, unsigned int size)
{
	return __perf_output_begin(handle, data, event, size, false);
}
  • __perf_output_begin
static __always_inline int
__perf_output_begin(struct perf_output_handle *handle,
		    struct perf_sample_data *data,
		    struct perf_event *event, unsigned int size,
		    bool backward)
{
	struct perf_buffer *rb;
	unsigned long tail, offset, head;
	int have_lost, page_shift;
	struct {
		struct perf_event_header header;
		u64			 id;
		u64			 lost;
	} lost_event;

	rcu_read_lock();
	/*
	 * For inherited events we send all the output towards the parent.
	 */
	if (event->parent)
		event = event->parent;

	rb = rcu_dereference(event->rb);
	if (unlikely(!rb))
		goto out;

	if (unlikely(rb->paused)) {
		if (rb->nr_pages) {
			local_inc(&rb->lost);
			atomic64_inc(&event->lost_samples);
		}
		goto out;
	}

	handle->rb    = rb;
	handle->event = event;

	have_lost = local_read(&rb->lost);
	if (unlikely(have_lost)) {
		size += sizeof(lost_event);
		if (event->attr.sample_id_all)
			size += event->id_header_size;
	}

	// 关闭抢占,同时将rb->nest加1,同时记录rb->wakeup到handle中,用于处理是否需要唤醒应用
	perf_output_get_handle(handle);

	do {
		/* 这里data_tail在内核这边是只读,由应用负责更新,初始值为0 */
		tail = READ_ONCE(rb->user_page->data_tail);

		// head表示要写入的位置对应的偏移量,初始值为0
		// 在这个循环中,offset记录head推进之间的值,用来检查在此期间rb->head是否有更新
		offset = head = local_read(&rb->head);

		// 如果overwrite是0,那么表示内核在写入之前需要检查应用是否已经读走,防止数据被覆盖
		// 当应用在mmap时设置了可写权限,那么overwrite就是0,如果是只读的话,即overwrite是1,
		// 内核可以放心地覆盖缓冲区的数据,不关心应用是否已经读走
		// 下面ring_buffer_has_space就是用来判断是否有足够的空间容纳size字节数据:
		// (tail - head + 1)& (perf_data_size(rb) - 1)>= size
		// 如果空间无法容纳,返回0,否则返回1
		if (!rb->overwrite) {
			if (unlikely(!ring_buffer_has_space(head, tail,
							    perf_data_size(rb),
							    size, backward)))
				goto fail;  // 空间不足
		}

		/*
		 * The above forms a control dependency barrier separating the
		 * @tail load above from the data stores below. Since the @tail
		 * load is required to compute the branch to fail below.
		 *
		 * A, matches D; the full memory barrier userspace SHOULD issue
		 * after reading the data and before storing the new tail
		 * position.
		 *
		 * See perf_output_put_handle().
		 */

		if (!backward)
			head += size;
		else
			head -= size;

	// 这里判断rb->head是否跟offset相等,如果相等,那么将head赋值给rb->head,返回offset
	// 据此判断在计算head期间rb->head是否发生了更新
	// 这个while循环退出后,rb->head以及head指向下一个可写的位置,offset表示head推进之前的值
	} while (local_cmpxchg(&rb->head, offset, head) != offset);

	// 到这里,rb->head表示下一个要写入的位置,而offset表示当前要写入的位置

	if (backward) {
		offset = head;
		head = (u64)(-head);
	}

	/*
	 * We rely on the implied barrier() by local_cmpxchg() to ensure
	 * none of the data stores below can be lifted up by the compiler.
	 */

	if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
		local_add(rb->watermark, &rb->wakeup);

	// page_shift用于表示ring buffer的data区的大小,即2^n * PAGE_SIZE
	page_shift = PAGE_SHIFT + page_order(rb);

	// 计算data区的page索引号,data区有2^n个page组成,这里会计算offset对应的是哪个page
	// 这里可以看到,head都是单调递增,导致offset此时可能已经超过缓冲区大小,需要处理wrap
	handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
	// 计算页内偏移,同时处理了回绕
	offset &= (1UL << page_shift) - 1;
	// 这里会兼容两种缓冲区分配方式,一种是一页一页分配,这种方式会出现页之间的虚拟地址不连续,
	// 通过data_pages[]数组记录每个页的地址,页的数量记录在rb->nr_pages中;第二种是调用vmalloc
	// 一次分配完毕,这样所有这些页的虚拟地址是连续的,此时nr_pages固定设置为1,即只需要data_pages[0]
	// 记录首地址即可,具体参考rb_alloc
	// 如果是虚拟地址连续的情况,因为nr_pages是1,所以上面计算得到的handle->page是0,所以下面
	// 下面就是rb->data_pages[0] + offset,从而得到要写入的地址
	// 如果是不连续的情况,上面handle->page计算得到offset所在的page的索引,下面再得到要写入的位置
	handle->addr = rb->data_pages[handle->page] + offset;
	// 计算缓冲区剩余空空间大小,offset记录的是当前要写入的偏移量,尚未写入,这里只是计算写入位置信息
	handle->size = (1UL << page_shift) - offset;

	// 如果发生过因为缓冲区空间不足导致无法写入,上面会把have_lost设置为发生lost的次数
	// 下面会往ring buffer中写入一个PERF_RECORD_LOST的记录
	if (unlikely(have_lost)) {
		lost_event.header.size = sizeof(lost_event);
		lost_event.header.type = PERF_RECORD_LOST;
		lost_event.header.misc = 0;
		lost_event.id          = event->id;  // 发生lost的事件的perf_event的id
		lost_event.lost        = local_xchg(&rb->lost, 0); // lost的次数

		/* XXX mostly redundant; @data is already fully initializes */
		perf_event_header__init_id(&lost_event.header, data, event);
		perf_output_put(handle, lost_event);
		perf_event__output_id_sample(event, handle, data);
	}

	return 0;

fail:
	// 空间不足导致写入失败,记录这种情况发生的次数
	local_inc(&rb->lost);
	// perf_event之间可以共享perf buffer,还需要单独再记录每个perf event发生lost的次数
	atomic64_inc(&event->lost_samples);
	perf_output_put_handle(handle);
out:
	rcu_read_unlock();

	return -ENOSPC;
}

perf_output_sample

这个函数用来根据传入的header、data等来填充缓冲区。这里暂时不打算分析,只是关心其中具体写缓冲区的函数:perf_output_put

以下面的调用为例:

perf_output_put(handle, data->time);

这个函数的作用是将data->time成员的内容写入到handle描述的缓冲区中。

展开后得到:

perf_output_copy(handle, &data->time, sizeof(data->time));

这样看上去会更加清楚。

perf_output_copy的定义如下:

unsigned int perf_output_copy(struct perf_output_handle *handle,
		      const void *buf, unsigned int len)
{
	return __output_copy(handle, buf, len);
}

其中__output_copy进一步展开后得到:

static inline unsigned long memcpy_common(void *dst, const void *src, unsigned long n)
{
	memcpy(dst, src, n);
	return 0;
}

static inline unsigned long __output_copy(struct perf_output_handle *handle, const void *buf, unsigned long len)
{
	unsigned long size, written;

	do {
		// 保证不越界
		size = min(handle->size, len);
		// 将buf中的内容拷贝到handle->addr指向的缓冲区中,参考上面对__perf_output_begin的分析,拷贝的字节数是size
		written = memcpy_common(handle->addr, buf, size);
		written = size - written;
		// 如果成功写完
		len -= written;

		// 向前推进地址
		handle->addr += written;

		if (true)
			buf += written;

		// 写完后,更新缓冲区空闲空间字节数
		handle->size -= written;
		// 如果size为0,表示缓冲区用完,此时需要回绕到开头,从而实现ring buffer的功能
		if (!handle->size) {
			struct perf_buffer *rb = handle->rb;
			// 更新要写入的page的数组索引
			handle->page++;
			// 对于连续缓冲区的情况,nr_pages是0,所以会将handle->page设置为0,因为此时只有data_pages[0]
			handle->page &= rb->nr_pages - 1;
			// 重新得到下一个要写入的位置
			handle->addr = rb->data_pages[handle->page];
			// data区的大小,即2^n * PAGE_SIZE
			handle->size = ((1UL) << 12) << page_order(rb);
		}
	} while (len && written == size);

	return len;
}

在perf_output_sample函数的最后有下面的逻辑:

	if (!event->attr.watermark) {
		int wakeup_events = event->attr.wakeup_events;

		if (wakeup_events) {
			struct perf_buffer *rb = handle->rb;
			int events = local_inc_return(&rb->events);

			if (events >= wakeup_events) {
				local_sub(wakeup_events, &rb->events);
				local_inc(&rb->wakeup);
			}
		}
	}

其中wakeup_events表示每累计多少次event就唤醒一次,上面的逻辑比较简单,当次数累计够了,其中会对rb->wakeup递增,在perf_output_put_handle中会根据这个值是否有变化来判断是否需要唤醒应用。

perf_output_put_handle

  • perf_output_end
void perf_output_end(struct perf_output_handle *handle)
{
	perf_output_put_handle(handle);
	rcu_read_unlock();
}
  • perf_output_put_handle
static void perf_output_put_handle(struct perf_output_handle *handle)
{
	struct perf_buffer *rb = handle->rb;
	unsigned long head;
	unsigned int nest;

	/*
	 * If this isn't the outermost nesting, we don't have to update
	 * @rb->user_page->data_head.
	 */
	nest = READ_ONCE(rb->nest);
	if (nest > 1) {
		WRITE_ONCE(rb->nest, nest - 1);
		goto out;
	}

again:
	/*
	 * In order to avoid publishing a head value that goes backwards,
	 * we must ensure the load of @rb->head happens after we've
	 * incremented @rb->nest.
	 *
	 * Otherwise we can observe a @rb->head value before one published
	 * by an IRQ/NMI happening between the load and the increment.
	 */
	barrier();
	head = local_read(&rb->head);

	/*
	 * IRQ/NMI can happen here and advance @rb->head, causing our
	 * load above to be stale.
	 */

	/*
	 * Since the mmap() consumer (userspace) can run on a different CPU:
	 *
	 *   kernel				user
	 *
	 *   if (LOAD ->data_tail) {		LOAD ->data_head
	 *			(A)		smp_rmb()	(C)
	 *	STORE $data			LOAD $data
	 *	smp_wmb()	(B)		smp_mb()	(D)
	 *	STORE ->data_head		STORE ->data_tail
	 *   }
	 *
	 * Where A pairs with D, and B pairs with C.
	 *
	 * In our case (A) is a control dependency that separates the load of
	 * the ->data_tail and the stores of $data. In case ->data_tail
	 * indicates there is no room in the buffer to store $data we do not.
	 *
	 * D needs to be a full barrier since it separates the data READ
	 * from the tail WRITE.
	 *
	 * For B a WMB is sufficient since it separates two WRITEs, and for C
	 * an RMB is sufficient since it separates two READs.
	 *
	 * See perf_output_begin().
	 */
	smp_wmb(); /* B, matches C */
	// 将head更新到perf_event_mmap_page中,需要注意的是,这个值是单调递增,需要应用
	// 自己处理回绕的问题,此外,这个值表示下一个要写入的位置,而不是刚刚写入的记录的
	// 位置,所以需要应用自己备份
	WRITE_ONCE(rb->user_page->data_head, head);

	/*
	 * We must publish the head before decrementing the nest count,
	 * otherwise an IRQ/NMI can publish a more recent head value and our
	 * write will (temporarily) publish a stale value.
	 */
	barrier();
	WRITE_ONCE(rb->nest, 0);

	/*
	 * Ensure we decrement @rb->nest before we validate the @rb->head.
	 * Otherwise we cannot be sure we caught the 'last' nested update.
	 */
	barrier();
	if (unlikely(head != local_read(&rb->head))) {
		WRITE_ONCE(rb->nest, 1);
		goto again;
	}

	if (handle->wakeup != local_read(&rb->wakeup))
		perf_output_wakeup(handle);

out:
	preempt_enable();
}

唤醒应用

在内核写完一个事件后,最后在调用perf_output_put_handle时,如果发现需要唤醒应用,那么会调用perf_output_wakeup。

static void perf_output_wakeup(struct perf_output_handle *handle)
{
	atomic_set(&handle->rb->poll, EPOLLIN);

	handle->event->pending_wakeup = 1;
	irq_work_queue(&handle->event->pending_irq);
}

在分配perf_event时,给pending_irq设置的是perf_pending_irq:

static void perf_pending_irq(struct irq_work *entry)
{
	struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
	int rctx;

	/*
	 * If we 'fail' here, that's OK, it means recursion is already disabled
	 * and we won't recurse 'further'.
	 */
	rctx = perf_swevent_get_recursion_context();

	/*
	 * The wakeup isn't bound to the context of the event -- it can happen
	 * irrespective of where the event is.
	 */
	if (event->pending_wakeup) {
		event->pending_wakeup = 0;
		// 应用如果在poll的话,会被唤醒
		perf_event_wakeup(event);
	}

	__perf_pending_irq(event);

	if (rctx >= 0)
		perf_swevent_put_recursion_context(rctx);
}

应用读

参考: https://www.cnblogs.com/pengdonglin137/p/17989602

下面两个参考链接中给出了data_tail如何使用。

完。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章