阻抗匹配基礎知識詳解

本文轉自濾波器

基本概念

信號傳輸過程中負載阻抗信源內阻抗之間的特定配合關係。一件器材的輸出阻抗和所連接的負載阻抗之間所應滿足的某種關係,以免接上負載後對器材本身的工作狀態產生明顯的影響。對電子設備互連來說,例如信號源連放大器,前級連後級,只要後一級的輸入阻抗大於前一級的輸出阻抗5-10倍以上,就可認爲阻抗匹配良好;對於放大器連接音箱來說,電子管機應選用與其輸出端標稱阻抗相等或接近的音箱,而晶體管放大器則無此限制,可以接任何阻抗的音箱。

匹配條件

  1. 負載阻抗等於信源內阻抗,即它們的模與輻角分別相等,這時在負載阻抗上可以得到無失真的電壓傳輸
  2. 負載阻抗等於信源內阻抗的共軛值,即它們的模相等輻角之和爲零。這時在負載阻抗上可以得到最大功率。這種匹配條件稱爲共軛匹配。如果信源內阻抗和負載阻抗均爲純阻性,則兩種匹配條件是等同的。

阻抗匹配是指負載阻抗與激勵源內部阻抗互相適配,得到最大功率輸出的一種工作狀態。對於不同特性的電路,匹配條件是不一樣的。在純電阻電路中,當負載電阻等於激勵源內阻時,則輸出功率爲最大,這種工作狀態稱爲匹配,否則稱爲失配。

當激勵源內阻抗和負載阻抗含有電抗成份時,爲使負載得到最大功率,負載阻抗與內阻必須滿足共扼關係,即電阻成份相等電抗成份絕對值相等而符號相反。這種匹配條件稱爲共扼匹配

阻抗匹配(Impedance matching)是微波電子學裏的一部分,主要用於傳輸線上,來達至所有高頻的微波信號皆能傳至負載點的目的,不會有信號反射回來源點,從而提升能源效益。史密夫圖表上。電容或電感與負載串聯起來,即可增加或減少負載的阻抗值,在圖表上的點會沿著代表實數電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點會以圖中心旋轉180度,然後才沿電阻圈走動,再沿中心旋轉180度。重覆以上方法直至電阻值變成1,即可直接把阻抗力變爲零完成匹配。

共軛匹配

在信號源給定的情況下,輸出功率取決於負載電阻與信號源內阻之比K,當兩者相等,即K=1時,輸出功率最大。然而阻抗匹配的概念可以推廣到交流電路,當負載阻抗與信號源阻抗共軛時,能夠實現功率的最大傳輸,如果負載阻抗不滿足共軛匹配的條件,就要在負載和信號源之間加一個阻抗變換網絡,將負載阻抗變換爲信號源阻抗的共軛,實現阻抗匹配

匹配分類

大體上,阻抗匹配有兩種,一種是透過改變阻抗力(lumped-circuit matching),另一種則是調整傳輸線的波長(transmission line matching)

要匹配一組線路,首先把負載點的阻抗值除以傳輸線的特性阻抗值來歸一化,然後把數值劃在史密夫圖表上。

1、改變阻抗力

電容或電感與負載串聯起來,即可增加或減少負載的阻抗值,在圖表上的點會沿著代表實數電阻的圓圈走動。如果把電容或電感接地,首先圖表上的點會以圖中心旋轉180度,然後才沿電阻圈走動,再沿中心旋轉180度。重複以上方法直至電阻值變成1,即可直接把阻抗力變爲零完成匹配。

2、調整傳輸線

由負載點至來源點加長傳輸線,在圖表上的圓點會沿著圖中心以逆時針方向走動,直至走到電阻值爲1的圓圈上,即可加電容或電感把阻抗力調整爲零,完成匹配。

阻抗匹配則傳輸功率大,對於一個電源來講,單它的內阻等於負載時,輸出功率最大,此時阻抗匹配。最大功率傳輸定理,如果是高頻的話,就是無反射波。對於普通的寬頻放大器,輸出阻抗50Ω,功率傳輸電路中需要考慮阻抗匹配,可是如果信號波長遠遠大於電纜長度,即纜長可以忽略的話,就無須考慮阻抗匹配了。阻抗匹配是指在能量傳輸時,要求負載阻抗要和傳輸線的特徵阻抗相等,此時的傳輸不會產生反射,這表明所有能量都被負載吸收了。反之則在傳輸中有能量損失。高速PCB佈線時,爲了防止信號的反射,要求是線路的阻抗爲50歐姆。這是個大約的數字,一般規定同軸電纜基帶50歐姆,頻帶75歐姆,對絞線則爲 100歐姆,只是取個整而已,爲了匹配方便。

何爲阻抗

阻抗是電阻與電抗向量上的和。高頻電路的阻抗匹配由於高頻功率放大器工作於非線性狀態,所以線性電路和阻抗匹配(即:負載阻抗與電源內阻相等)這一概念不能適用於它。因爲在非線性(如:丙類)工作的時候,電子器件的內阻變動劇烈:通流的時候,內阻很小;截止的時候,內阻接近無窮大。因此輸出電阻不是常數。所以所謂匹配的時候內阻等於外阻,也就失去了意義。因此,高頻功率放大的阻抗匹配概念是:在給定的電路條件下,改變負載迴路的可調元件,使電子器件送出額定的輸出功率至負載。這就叫做達到了匹配狀態。

怎樣理解阻抗匹配

阻抗匹配是指信號源或者傳輸線跟負載之間的一種合適的搭配方式。阻抗匹配分爲低頻高頻兩種情況討論。

我們先從直流電壓源驅動一個負載入手。由於實際的電壓源,總是有內阻的,我們可以把一個實際電壓源,等效成一個理想的電壓源跟一個電阻r串聯的模型。假設負載電阻爲R電源電動勢爲U內阻爲r,那麼我們可以計算出流過電阻R的電流爲:I=U/(R+r),可以看出,負載電阻R越小,則輸出電流越大負載R上的電壓爲:Uo=IR=U*[1+(r/R)],可以看出,負載電阻R越大,則輸出電壓Uo越高。再來計算一下電阻R消耗的功率爲:

P= I * I * R = [ U / ( R + r ) ] * [ U / ( R + r ) ] * R=U * U * R / ( R * R + 2 * R * r + r * r )
= U* U * R / [ ( R - r ) * ( R - r ) + 4 * R * r ]
= U * U / { [ ( R - r ) * ( R - r ) / R ] + 4 * r }

對於一個給定的信號源,其內阻r是固定的,而負載電阻R則是由我們來選擇的。注意式中[ ( R - r ) * ( R - r ) / R ],當R = r時,[ ( R - r ) * ( R - r ) / R ]可取得最小值0,這時負載電阻R上可獲得最大輸出功率 Pmax = U * U / ( 4 * r )。即,當負載電阻跟信號源內阻相等時,負載可獲得最大輸出功率,這就是我們常說的阻抗匹配之一。對於純電阻電路,此結論同樣適用於低頻電路及高頻電路。當交流電路中含有容性或感性阻抗時,結論有所改變,就是需要信號源與負載阻抗的的實部相等,虛部互爲相反數,這叫做共厄匹配在低頻電路中,我們一般不考慮傳輸線的匹配問題,只考慮信號源跟負載之間的情況,因爲低頻信號的波長相對於傳輸線來說很長,傳輸線可以看成是“短線”,反射可以不考慮(可以這麼理解:因爲線短,即使反射回來,跟原信號還是一樣的)。從以上分析我們可以得出結論:如果我們需要輸出電流大,則選擇小的負載R如果我們需要輸出電壓大,則選擇大的負載R如果我們需要輸出功率最大,則選擇跟信號源內阻匹配的電阻R。有時阻抗不匹配還有另外一層意思,例如一些儀器輸出端是在特定的負載條件下設計的,如果負載條件改變了,則可能達不到原來的性能,這時我們也會叫做阻抗失配。

在高頻電路中,我們還必須考慮反射的問題。當信號的頻率很高時,則信號的波長就很短,當波長短得跟傳輸線長度可以比擬時,反射信號疊加在原信號上將會改變原信號的形狀。如果傳輸線的特徵阻抗跟負載阻抗不匹配(相等)時,在負載端就會產生反射。爲什麼阻抗不匹配時會產生反射以及特徵阻抗的求解方法,牽涉到二階偏微分方程的求解,在這裏我們不細說了,有興趣的可參看電磁場與微波方面書籍中的傳輸線理論。傳輸線的特徵阻抗(也叫做特性阻抗)是由傳輸線的結構以及材料決定的,而與傳輸線的長度,以及信號的幅度、頻率等均無關。例如,常用的閉路電視同軸電纜特性阻抗爲75歐,而一些射頻設備上則常用特徵阻抗爲50歐的同軸電纜。另外還有一種常見的傳輸線是特性阻抗爲300歐的扁平平行線,這在農村使用的電視天線架上比較常見,用來做八木天線的饋線。因爲電視機的射頻輸入端輸入阻抗爲75歐,所以300歐的饋線將與其不能匹配。實際中是如何解決這個問題的呢?不知道大家有沒有留意到,電視機的附件中,有一個300歐到75歐的阻抗轉換器(一個塑料包裝的,一端有一個圓形的插頭的那個東東,大概有兩個大拇指那麼大的)?它裏面其實就是一個傳輸線變壓器,將300歐的阻抗,變換成75歐的,這樣就可以匹配起來了。這裏需要強調一點的是,特性阻抗跟我們通常理解的電阻不是一個概念,它與傳輸線的長度無關,也不能通過使用歐姆表來測量。爲了不產生反射,負載阻抗跟傳輸線的特徵阻抗應該相等,這就是傳輸線的阻抗匹配。如果阻抗不匹配會有什麼不良後果呢?如果不匹配,則會形成反射,能量傳遞不過去,降低效率會在傳輸線上形成駐波(簡單的理解,就是有些地方信號強,有些地方信號弱),導致傳輸線的有效功率容量降低功率發射不出去,甚至會損壞發射設備如果是電路板上的高速信號線與負載阻抗不匹配時,會產生震盪,輻射干擾等

當阻抗不匹配時,有哪些辦法讓它匹配呢?
第一,可以考慮使用變壓器來做阻抗轉換,就像上面所說的電視機中的那個例子那樣。
第二,可以考慮使用串聯/並聯電容或電感的辦法,這在調試射頻電路時常使用。
第三,可以考慮使用串聯/並聯電阻的辦法。一些驅動器的阻抗比較低,可以串聯一個合適的電阻來跟傳輸線匹配,例如高速信號線,有時會串聯一個幾十歐的電阻。而一些接收器的輸入阻抗則比較高,可以使用並聯電阻的方法,來跟傳輸線匹配,例如,485總線接收器,常在數據線終端並聯120歐的匹配電阻

爲了幫助大家理解阻抗不匹配時的反射問題,我來舉兩個例子:假設你在練習拳擊——打沙包。如果是一個重量合適的、硬度合適的沙包,你打上去會感覺很舒服。但是,如果哪一天我把沙包做了手腳,例如,裏面換成了鐵沙,你還是用以前的力打上去,你的手可能就會受不了了——這就是負載過重的情況,會產生很大的反彈力。相反,如果我把裏面換成了很輕很輕的東西,你一出拳,則可能會撲空,手也可能會受不了——這就是負載過輕的情況。另一個例子,不知道大家有沒有過這樣的經歷:就是看不清樓梯時上/下樓梯,當你以爲還有樓梯時,就會出現“負載不匹配”這樣的感覺了。當然,也許這樣的例子不太恰當,但我們可以拿它來理解負載不匹配時的反射情況。

高速PCB設計中的阻抗匹配(資料整理)

阻抗匹配

阻抗匹配是指在能量傳輸時,要求負載阻抗要和傳輸線的特徵阻抗相等,此時的傳輸不會產生反射,這表明所有能量都被負載吸收了。反之則在傳輸中有能量損失。在高速PCB設計中,阻抗的匹配與否關係到信號的質量優劣。

PCB走線什麼時候需要做阻抗匹配?

不主要看頻率,而關鍵是看信號的邊沿陡峭程度,即信號的上升/下降時間,一般認爲如果信號的上升/下降時間(按10%~90%計)小於6倍導線延時,就是高速信號,必須注意阻抗匹配的問題。導線延時一般取值爲150ps/inch

特徵阻抗

信號沿傳輸線傳播過程當中,如果傳輸線上各處具有一致的信號傳播速度,並且單位長度上的電容也一樣,那麼信號在傳播過程中總是看到完全一致的瞬間阻抗。由於在整個傳輸線上阻抗維持恆定不變,我們給出一個特定的名稱,來表示特定的傳輸線的這種特徵或者是特性,稱之爲該傳輸線的特徵阻抗。特徵阻抗是指信號沿傳輸線傳播時,信號看到的瞬間阻抗的值。特徵阻抗與PCB導線所在的板層PCB所用的材質(介電常數)走線寬度導線與平面的距離等因素有關,與走線長度無關。特徵阻抗可以使用軟件計算。高速PCB佈線中,一般把數字信號的走線阻抗設計爲50歐姆,這是個大約的數字。一般規定同軸電纜基帶50歐姆,頻帶75歐姆,對絞線(差分)爲100歐姆。

常見阻抗匹配的方式

1、串聯終端匹配

在信號源端阻抗低於傳輸線特徵阻抗的條件下,在信號的源端和傳輸線之間串接一個電阻R,使源端的輸出阻抗與傳輸線的特徵阻抗相匹配,抑制從負載端反射回來的信號發生再次反射。

匹配電阻選擇原則:匹配電阻值與驅動器的輸出阻抗之和等於傳輸線的特徵阻抗。常見的CMOS和TTL驅動器,其輸出阻抗會隨信號的電平大小變化而變化。因此,對TTL或CMOS電路來說,不可能有十分正確的匹配電阻,只能折中考慮鏈狀拓撲結構的信號網路不適合使用串聯終端匹配,所有的負載必須接到傳輸線的末端。

串聯匹配是最常用的終端匹配方法。它的優點是功耗小,不會給驅動器帶來額外的直流負載,也不會在信號和地之間引入額外的阻抗,而且只需要一個電阻元件。

常見應用:一般的CMOS、TTL電路的阻抗匹配。USB信號也採樣這種方法做阻抗匹配。

2、並聯終端匹配

信號源端阻抗很小的情況下,通過增加並聯電阻使負載端輸入阻抗與傳輸線的特徵阻抗相匹配,達到消除負載端反射的目的。實現形式分爲單電阻雙電阻兩種形式。

匹配電阻選擇原則:在芯片的輸入阻抗很高的情況下,對單電阻形式來說,負載端的並聯電阻值必須與傳輸線的特徵阻抗相近或相等;對雙電阻形式來說,每個並聯電阻值爲傳輸線特徵阻抗的兩倍

並聯終端匹配優點是簡單易行,顯而易見的缺點是會帶來直流功耗:單電阻方式的直流功耗與信號的佔空比緊密相關;雙電阻方式則無論信號是高電平還是低電平都有直流功耗,但電流比單電阻方式少一半。

常見應用:以高速信號應用較多。

  1. DDR、DDR2等SSTL驅動器。採用單電阻形式,並聯到VTT(一般爲IOVDD的一半)。其中DDR2數據信號的並聯匹配電阻是內置在芯片中的。

  2. TMDS等高速串行數據接口。採用單電阻形式,在接收設備端並聯到IOVDD,單端阻抗爲50歐姆(差分對間爲100歐姆)。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章