曲線擬合的最小二乘法(基於OpenCV實現)的,擬合圖像中離散點的擬合直線


   今天使用擬合的最小二乘法,求出了給定的一組座標系上的點對最接近的直線的。
  其具體理論如下:
   在科學實驗數據處理中,往往要根據一組給定的實驗數據,求出自變量x與因變量y的函數關係,這是爲待定參數,由於觀測數據總有誤差,且待定參數ai的數量比給定數據點的數量少(即n<m),因此它不同於插值問題.這類問題不要求通過點,而只要求在給定點上的誤差的平方和最小.當時,即
         (5.8.1)
這裏是線性無關的函數族,假定在上給出一組數據以及對應的一組權,這裏爲權係數,要求使最小,其中
           (5.8.2)

這就是最小二乘逼近,得到的擬合曲線爲y=s(x),這種方法稱爲曲線擬合的最小二乘法.
  (5.8.2)中實際上是關於的多元函數,求I的最小值就是求多元函數I的極值,由極值必要條件,可得
      (5.8.3)
根據內積定義(見第三章)引入相應帶權內積記號
             (5.8.4)
則(5.8.3)可改寫爲
     
這是關於參數的線性方程組,用矩陣表示爲
            (5.8.5)
(5.8.5)稱爲法方程.當線性無關,且在點集上至多隻有n個不同零點,則稱在X上滿足Haar條件,此時(5.8.5)的解存在唯一(證明見[3]).記(5.8.5)的解爲
        
從而得到最小二乘擬合曲線
          (5.8.6)
可以證明對,有
     
故(5.8.6)得到的即爲所求的最小二乘解.它的平方誤差爲
                  (5.8.7)
均方誤差爲
          
  在最小二乘逼近中,若取,則,表示爲
             (5.8.8)
此時關於係數的法方程(5.8.5)是病態方程,通常當n≥3時都不直接取作爲基。

源代碼如下:
基於OpenCV
int calAngle(IplImage **lpSrc, IplImage **lpRes, double* angle)
{
    long double a,b,q;
    long double u11,u12,u21,u22,c1,c2,p;
    int i,j;
    MYPOINT *points = 0;
    IplImage *src = *lpSrc;
    IplImage *res = *lpRes;
    int step = src->widthStep/sizeof(char);    //排列的圖像行大小,以字節爲單位   
    uchar *srcData = (uchar*)src->imageData;
    int elementCount = 0;
    MYPOINT tempPoint;
    MYPOINT *interatorPoint;
    CvPoint startPoint, endPoint;
   
    res = cvCreateImage( cvGetSize(src), 8, 3 );
    memset(res->imageData, 0x00, (src->width)*(src->height));

    u11 = 0.0;
    u12 = 0.0;
    u21 = 0.0;
    u22 = 0.0;
    c1 = 0.0;
    c2 = 0.0;
    p = 0.0;
   
    points = (MYPOINT*)malloc((src->height) * sizeof(MYPOINT));
    interatorPoint = points;
    for (j = 0; j < src->height; ++j)
    {
        for (i = 0; i < src->width; ++i)
        {
            if (srcData[j*step + i] == 255)
            {
                tempPoint.x = i;
                tempPoint.y = j;
                *interatorPoint = tempPoint;
                ++interatorPoint;
                ++elementCount;
                break;
            }
        }
    }

    interatorPoint = points;
    for (i = 0; i < elementCount; i++)//列法方程
    {
        if (0 == i)
        {
            startPoint.x = (*interatorPoint).x;
            startPoint.y = (*interatorPoint).y;
        }
        u11+=1.0;
        u12+=(*interatorPoint).x;
        u22+=(*interatorPoint).x*(*interatorPoint).x;
        c1+=(*interatorPoint).y;
        c2+=(*interatorPoint).y*(*interatorPoint).x;
        ++interatorPoint;
        //printf("##:%d:/t    %lf, %lf, %lf, %lf, %lf%\n", i, u11, u12, u22, c1, c2);
    }
    u21=u12;
    a=(c1*u22-c2*u12)*1.0/(u11*u22-u12*u21);//求a,b的解
    b=(c1*u21-c2*u11)*1.0/(u21*u12-u22*u11);

    interatorPoint = points;

    for(i = 0; i < elementCount; i++)
    {
        (*interatorPoint).z=a+b*(*interatorPoint).x;
        p+=pow(((*interatorPoint).z-(*interatorPoint).y),2);
        ++interatorPoint;
    }
   
    q=sqrt(p);

    //輸出線性方程   
    printf("answer:s(x)=%lf+%lf(x)\n",a,b);

    endPoint.y = src->height - 1;
    endPoint.x = ( endPoint.y -a ) / b;
    printf("endPoint:%d, %d\n", endPoint.x, endPoint.y);
    //輸出均方誤差
    printf("均方誤差:q=%lf\n",q);

    *angle = atan(b);
    printf("Angle is: %f", *angle*180.0/PI);
   
    cvLine(res, startPoint, endPoint, CV_RGB(0,255,0), 1, 8 );

    cvReleaseImage(lpRes);
   
    *lpRes = res;
   
    free(points);
    return 0;
}

擬合後的結果如下:
其中左邊是離散的一些點,右邊綠色的線是擬合後的直線。

原文地址:http://blog.chinaunix.net/u1/58901/showart_2085724.html

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章