Tensorflow實現VGGNet

from datetime import datetime
import math
import time
import tensorflow as tf

#創建卷積層並把本層的參數存入參數列表
#input_op是輸入的tennsor,name是這一層的名稱,kh是kernel height即卷積核的高,kw是kernel width
#即卷積核的寬,n_out是卷積核數量即輸出通道數,dh是步長的高,dw是步長的寬,p是參數列表
def conv_op(input_op, name, kh, kw, n_out, dh, dw, p):
    n_in = input_op.get_shape()[-1].value#獲得通道數
    with tf.name_scope(name) as scope:#使用scope避免命名衝突;註釋1
        kernel = tf.get_variable(scope + "w",
                                 shape=[kh, kw, n_in, n_out],
                                 dtype=tf.float32,
                                 initializer=tf.contrib.layers.xavier_initializer_conv2d())
        conv = tf.nn.conv2d(input_op, kernel, (1, dh, dw, 1), padding='SAME')
        bias_init_val = tf.constant(0.0, shape=[n_out], dtype=tf.float32)
        biases = tf.Variable(bias_init_val, trainable=True, name='b')
        z = tf.nn.bias_add(conv, biases)
        activation = tf.nn.relu(z, name=scope)
        p += [kernel, biases]
        return activation

#全連接層
def fc_op(input_op, name, n_out, p):
    n_in = input_op.get_shape()[-1].value
    with tf.name_scope(name) as scope:
        kernel = tf.get_variable(scope + "w",
                                 shape=[n_in, n_out],
                                 dtype=tf.float32,
                                 initializer=tf.contrib.layers.xavier_initializer())
#將biases賦一個較小值0.1,避免dead neuron
        biases = tf.Variable(tf.constant(0.1, shape=[n_out], dtype=tf.float32), name='b')
        activation = tf.nn.relu_layer(input_op, kernel, biases, name=scope)
        p += [kernel, biases]
        return activation

#最大池化層
def mpool_op(input_op, name, kh, kw, dh, dw):
    return tf.nn.max_pool(input_op,
                          ksize=[1, kh, kw, 1],
                          strides=[1, dh, dw, 1],
                          padding='SAME',
                          name=name)


def inference_op(input_op, keep_prob):
    p = []
    # assume input_op shape is 224x224x3
#第一層Input_op 224*224*3,output_op 224*24*64
#第二層輸入輸出都爲224*24*64
# max_pool-- outputs 112x112x64 2*2
    conv1_1 = conv_op(input_op, name="conv1_1", kh=3, kw=3, n_out=64, dh=1, dw=1, p=p)
    conv1_2 = conv_op(conv1_1, name="conv1_2", kh=3, kw=3, n_out=64, dh=1, dw=1, p=p)
    pool1 = mpool_op(conv1_2, name="pool1", kh=2, kw=2, dw=2, dh=2)
    # block 2 -- outputs 56x56x128
    conv2_1 = conv_op(pool1, name="conv2_1", kh=3, kw=3, n_out=128, dh=1, dw=1, p=p)
    conv2_2 = conv_op(conv2_1, name="conv2_2", kh=3, kw=3, n_out=128, dh=1, dw=1, p=p)
    pool2 = mpool_op(conv2_2, name="pool2", kh=2, kw=2, dh=2, dw=2)
    # block 3 -- outputs 28x28x256
    conv3_1 = conv_op(pool2, name="conv3_1", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
    conv3_2 = conv_op(conv3_1, name="conv3_2", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
    conv3_3 = conv_op(conv3_2, name="conv3_3", kh=3, kw=3, n_out=256, dh=1, dw=1, p=p)
    pool3 = mpool_op(conv3_3, name="pool3", kh=2, kw=2, dh=2, dw=2)
    # block 4 -- outputs 14x14x512
    conv4_1 = conv_op(pool3, name="conv4_1", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
    conv4_2 = conv_op(conv4_1, name="conv4_2", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
    conv4_3 = conv_op(conv4_2, name="conv4_3", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
    pool4 = mpool_op(conv4_3, name="pool4", kh=2, kw=2, dh=2, dw=2)
    # block 5 -- outputs 7x7x512
    conv5_1 = conv_op(pool4, name="conv5_1", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
    conv5_2 = conv_op(conv5_1, name="conv5_2", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
    conv5_3 = conv_op(conv5_2, name="conv5_3", kh=3, kw=3, n_out=512, dh=1, dw=1, p=p)
    pool5 = mpool_op(conv5_3, name="pool5", kh=2, kw=2, dw=2, dh=2)
    # flatten
    shp = pool5.get_shape()
    flattened_shape = shp[1].value * shp[2].value * shp[3].value
    resh1 = tf.reshape(pool5, [-1, flattened_shape], name="resh1")
    # fully connected
#連接一個隱含節點數爲4096的全連接層,激活函數爲ReLU
#連接一個Dropout層,在訓練時節點保留率爲0.5,預測時爲1.0
    fc6 = fc_op(resh1, name="fc6", n_out=4096, p=p)
    fc6_drop = tf.nn.dropout(fc6, keep_prob, name="fc6_drop")
    fc7 = fc_op(fc6_drop, name="fc7", n_out=4096, p=p)
    fc7_drop = tf.nn.dropout(fc7, keep_prob, name="fc7_drop")
    fc8 = fc_op(fc7_drop, name="fc8", n_out=1000, p=p)
    softmax = tf.nn.softmax(fc8)
    predictions = tf.argmax(softmax, 1)
    return predictions, softmax, fc8, p

#評測函數
#並不使用數據集訓練,而是使用隨機圖片數據測試前饋和反饋的計算耗時
def time_tensorflow_run(session, target, feed, info_string):#每輪計算時間
    num_steps_burn_in = 10
    total_duration = 0.0
    total_duration_squared = 0.0
    for i in range(num_batches + num_steps_burn_in):
        start_time = time.time()
        _ = session.run(target, feed_dict=feed)
        duration = time.time() - start_time
        if i >= num_steps_burn_in:
            if not i % 10:
                print('%s: step %d, duration = %.3f' %
                      (datetime.now(), i - num_steps_burn_in, duration))
            total_duration += duration
            total_duration_squared += duration * duration
    mn = total_duration / num_batches
    vr = total_duration_squared / num_batches - mn * mn
    sd = math.sqrt(vr)
    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
          (datetime.now(), info_string, num_batches, mn, sd))


def run_benchmark():
    with tf.Graph().as_default():
        image_size = 224
        images = tf.Variable(tf.random_normal([batch_size,
                                               image_size,
                                               image_size, 3],
                                              dtype=tf.float32,
                                              stddev=1e-1))
        keep_prob = tf.placeholder(tf.float32)
        predictions, softmax, fc8, p = inference_op(images, keep_prob)
        init = tf.global_variables_initializer()
        config = tf.ConfigProto()
        config.gpu_options.allocator_type = 'BFC'
        sess = tf.Session(config=config)
        sess.run(init)
        time_tensorflow_run(sess, predictions, {keep_prob: 1.0}, "Forward")
        objective = tf.nn.l2_loss(fc8)
        grad = tf.gradients(objective, p)
        time_tensorflow_run(sess, grad, {keep_prob: 0.5}, "Forward-backward")


batch_size = 32
num_batches = 100
run_benchmark()

    註釋1Xavier初始化器。如果深度學習模型的權重初始化得太小,那信號將在每層間傳遞時逐漸縮小而難以產生作用,但如果權重初始化得太大,那信號將在每層間傳遞時逐漸放大並導致發散和失效。而Xavier初始化器做的事情就是讓權重被初始化得不大不小,正好合適。即Xavier就是讓權重滿足0均值,同時方差爲2/(nin+nout)

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章