HashMap詳細介紹(源碼解析)

概要

我們先對HashMap有個整體認識,然後再學習它的源碼,最後再通過實例來學會使用HashMap。內容包括:
    第1部分 HashMap介紹
    第2部分 HashMap數據結構
    第3部分 HashMap源碼解析(基於JDK1.6)
          第3.1部分 HashMap的“拉鍊法”相關內容
          第3.2部分 HashMap的構造函數
          第3.3部分 HashMap的主要對外接口
          第3.4部分 HashMap實現的Cloneable接口
          第3.5部分 HashMap實現的Serializable接口
    第4部分 HashMap遍歷方式
    第5部分 HashMap示例

目錄

第1部分 HashMap介紹

第2部分 HashMap數據結構

第3部分 HashMap源碼解析(基於JDK1.6.0_45)

第4部分 HashMap遍歷方式

第5部分 HashMap示例


注:本文章轉自http://www.cnblogs.com/skywang12345/p/3310835.html

       非常詳細的關於Java集合框架中HashMap的文章,內附源碼,因此篇幅較長

第1部分 HashMap介紹

HashMap簡介

HashMap 是一個散列表,它存儲的內容是鍵值對(key-value)映射。
HashMap 繼承於AbstractMap,實現了Map、Cloneable、java.io.Serializable接口。
HashMap 的實現不是同步的,這意味着它不是線程安全的。它的key、value都可以爲null。此外,HashMap中的映射不是有序的。

HashMap 的實例有兩個參數影響其性能:“初始容量” 和 “加載因子”。容量 是哈希表中桶的數量,初始容量 只是哈希表在創建時的容量。加載因子 是哈希表在其容量自動增加之前可以達到多滿的一種尺度。當哈希表中的條目數超出了加載因子與當前容量的乘積時,則要對該哈希表進行 rehash 操作(即重建內部數據結構),從而哈希表將具有大約兩倍的桶數。
通常,默認加載因子是 0.75, 這是在時間和空間成本上尋求一種折衷。加載因子過高雖然減少了空間開銷,但同時也增加了查詢成本(在大多數 HashMap 類的操作中,包括 get 和 put 操作,都反映了這一點)。在設置初始容量時應該考慮到映射中所需的條目數及其加載因子,以便最大限度地減少 rehash 操作次數。如果初始容量大於最大條目數除以加載因子,則不會發生 rehash 操作。

 

HashMap的構造函數

HashMap共有4個構造函數,如下:

// 默認構造函數。
HashMap()

// 指定“容量大小”的構造函數
HashMap(int capacity)

// 指定“容量大小”和“加載因子”的構造函數
HashMap(int capacity, float loadFactor)

// 包含“子Map”的構造函數
HashMap(Map<? extends K, ? extends V> map)

HashMap的API

void                 clear()
Object               clone()
boolean              containsKey(Object key)
boolean              containsValue(Object value)
Set<Entry<K, V>>     entrySet()
V                    get(Object key)
boolean              isEmpty()
Set<K>               keySet()
V                    put(K key, V value)
void                 putAll(Map<? extends K, ? extends V> map)
V                    remove(Object key)
int                  size()
Collection<V>        values()

 

第2部分 HashMap數據結構

HashMap的繼承關係

java.lang.Object
   ↳     java.util.AbstractMap<K, V>
         ↳     java.util.HashMap<K, V>

public class HashMap<K,V>
    extends AbstractMap<K,V>
    implements Map<K,V>, Cloneable, Serializable { }

HashMap與Map關係如下圖

從圖中可以看出: 
(01) HashMap繼承於AbstractMap類,實現了Map接口。Map是"key-value鍵值對"接口,AbstractMap實現了"鍵值對"的通用函數接口。 
(02) HashMap是通過"拉鍊法"實現的哈希表。它包括幾個重要的成員變量:table, size, threshold, loadFactor, modCount。
  table是一個Entry[]數組類型,而Entry實際上就是一個單向鏈表。哈希表的"key-value鍵值對"都是存儲在Entry數組中的。 
  size是HashMap的大小,它是HashMap保存的鍵值對的數量。 
  threshold是HashMap的閾值,用於判斷是否需要調整HashMap的容量。threshold的值="容量*加載因子",當HashMap中存儲數據的數量達到threshold時,就需要將HashMap的容量加倍。
  loadFactor就是加載因子。 
  modCount是用來實現fail-fast機制的。

第3部分 HashMap源碼解析(基於JDK1.6.0_45)

爲了更瞭解HashMap的原理,下面對HashMap源碼代碼作出分析。
在閱讀源碼時,建議參考後面的說明來建立對HashMap的整體認識,這樣更容易理解HashMap。

說明:

在詳細介紹HashMap的代碼之前,我們需要了解:HashMap就是一個散列表,它是通過“拉鍊法”解決哈希衝突的
還需要再補充說明的一點是影響HashMap性能的有兩個參數:初始容量(initialCapacity) 和加載因子(loadFactor)。容量 是哈希表中桶的數量,初始容量只是哈希表在創建時的容量。加載因子 是哈希表在其容量自動增加之前可以達到多滿的一種尺度。當哈希表中的條目數超出了加載因子與當前容量的乘積時,則要對該哈希表進行 rehash 操作(即重建內部數據結構),從而哈希表將具有大約兩倍的桶數。


第3.1部分 HashMap的“拉鍊法”相關內容

3.1.1 HashMap數據存儲數組

transient Entry[] table;

HashMap中的key-value都是存儲在Entry數組中的。

3.1.2 數據節點Entry的數據結構

 

static class Entry<K,V> implements Map.Entry<K,V> {
    final K key;
    V value;
    // 指向下一個節點
    Entry<K,V> next;
    final int hash;

    // 構造函數。
    // 輸入參數包括"哈希值(h)", "鍵(k)", "值(v)", "下一節點(n)"
    Entry(int h, K k, V v, Entry<K,V> n) {
        value = v;
        next = n;
        key = k;
        hash = h;
    }

    public final K getKey() {
        return key;
    }

    public final V getValue() {
        return value;
    }

    public final V setValue(V newValue) {
        V oldValue = value;
        value = newValue;
        return oldValue;
    }

    // 判斷兩個Entry是否相等
    // 若兩個Entry的“key”和“value”都相等,則返回true。
    // 否則,返回false
    public final boolean equals(Object o) {
        if (!(o instanceof Map.Entry))
            return false;
        Map.Entry e = (Map.Entry)o;
        Object k1 = getKey();
        Object k2 = e.getKey();
        if (k1 == k2 || (k1 != null && k1.equals(k2))) {
            Object v1 = getValue();
            Object v2 = e.getValue();
            if (v1 == v2 || (v1 != null && v1.equals(v2)))
                return true;
        }
        return false;
    }

    // 實現hashCode()
    public final int hashCode() {
        return (key==null   ? 0 : key.hashCode()) ^
               (value==null ? 0 : value.hashCode());
    }

    public final String toString() {
        return getKey() + "=" + getValue();
    }

    // 當向HashMap中添加元素時,繪調用recordAccess()。
    // 這裏不做任何處理
    void recordAccess(HashMap<K,V> m) {
    }

    // 當從HashMap中刪除元素時,繪調用recordRemoval()。
    // 這裏不做任何處理
    void recordRemoval(HashMap<K,V> m) {
    }
}

從中,我們可以看出 Entry 實際上就是一個單向鏈表。這也是爲什麼我們說HashMap是通過拉鍊法解決哈希衝突的。
Entry 實現了Map.Entry 接口,即實現getKey(), getValue(), setValue(V value), equals(Object o), hashCode()這些函數。這些都是基本的讀取/修改key、value值的函數。

 

第3.2部分 HashMap的構造函數

HashMap共包括4個構造函數

// 默認構造函數。
public HashMap() {
    // 設置“加載因子”
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    // 設置“HashMap閾值”,當HashMap中存儲數據的數量達到threshold時,就需要將HashMap的容量加倍。
    threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
    // 創建Entry數組,用來保存數據
    table = new Entry[DEFAULT_INITIAL_CAPACITY];
    init();
}

// 指定“容量大小”和“加載因子”的構造函數
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    // HashMap的最大容量只能是MAXIMUM_CAPACITY
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);

    // Find a power of 2 >= initialCapacity
    int capacity = 1;
    while (capacity < initialCapacity)
        capacity <<= 1;

    // 設置“加載因子”
    this.loadFactor = loadFactor;
    // 設置“HashMap閾值”,當HashMap中存儲數據的數量達到threshold時,就需要將HashMap的容量加倍。
    threshold = (int)(capacity * loadFactor);
    // 創建Entry數組,用來保存數據
    table = new Entry[capacity];
    init();
}

// 指定“容量大小”的構造函數
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

// 包含“子Map”的構造函數
public HashMap(Map<? extends K, ? extends V> m) {
    this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
                  DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
    // 將m中的全部元素逐個添加到HashMap中
    putAllForCreate(m);
}

第3.3部分 HashMap的主要對外接口

3.3.1 clear()

clear() 的作用是清空HashMap。它是通過將所有的元素設爲null來實現的。

public void clear() {
    modCount++;
    Entry[] tab = table;
    for (int i = 0; i < tab.length; i++)
        tab[i] = null;
    size = 0;
}

3.3.2 containsKey()

containsKey() 的作用是判斷HashMap是否包含key

public boolean containsKey(Object key) {
    return getEntry(key) != null;
}

containsKey() 首先通過getEntry(key)獲取key對應的Entry,然後判斷該Entry是否爲null
getEntry()的源碼如下:

final Entry<K,V> getEntry(Object key) {
    // 獲取哈希值
    // HashMap將“key爲null”的元素存儲在table[0]位置,“key不爲null”的則調用hash()計算哈希值
    int hash = (key == null) ? 0 : hash(key.hashCode());
    // 在“該hash值對應的鏈表”上查找“鍵值等於key”的元素
    for (Entry<K,V> e = table[indexFor(hash, table.length)];
         e != null;
         e = e.next) {
        Object k;
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k))))
            return e;
    }
    return null;
}

getEntry() 的作用就是返回“鍵爲key”的鍵值對,它的實現源碼中已經進行了說明。
這裏需要強調的是:HashMap將“key爲null”的元素都放在table的位置0處,即table[0]中;“key不爲null”的放在table的其餘位置!


3.3.3 containsValue()

containsValue() 的作用是判斷HashMap是否包含“值爲value”的元素

public boolean containsValue(Object value) {
    // 若“value爲null”,則調用containsNullValue()查找
    if (value == null)
        return containsNullValue();

    // 若“value不爲null”,則查找HashMap中是否有值爲value的節點。
    Entry[] tab = table;
    for (int i = 0; i < tab.length ; i++)
        for (Entry e = tab[i] ; e != null ; e = e.next)
            if (value.equals(e.value))
                return true;
    return false;
}

從中,我們可以看出containsNullValue()分爲兩步進行處理:第一,若“value爲null”,則調用containsNullValue()。第二,若“value不爲null”,則查找HashMap中是否有值爲value的節點。

containsNullValue() 的作用判斷HashMap中是否包含“值爲null”的元素。

private boolean containsNullValue() {
    Entry[] tab = table;
    for (int i = 0; i < tab.length ; i++)
        for (Entry e = tab[i] ; e != null ; e = e.next)
            if (e.value == null)
                return true;
    return false;
}

3.3.4 entrySet()、values()、keySet()

它們3個的原理類似,這裏以entrySet()爲例來說明。
entrySet()的作用是返回“HashMap中所有Entry的集合”,它是一個集合。實現代碼如下:

// 返回“HashMap的Entry集合”
public Set<Map.Entry<K,V>> entrySet() {
    return entrySet0();
}

// 返回“HashMap的Entry集合”,它實際是返回一個EntrySet對象
private Set<Map.Entry<K,V>> entrySet0() {
    Set<Map.Entry<K,V>> es = entrySet;
    return es != null ? es : (entrySet = new EntrySet());
}

// EntrySet對應的集合
// EntrySet繼承於AbstractSet,說明該集合中沒有重複的EntrySet。
private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
    public Iterator<Map.Entry<K,V>> iterator() {
        return newEntryIterator();
    }
    public boolean contains(Object o) {
        if (!(o instanceof Map.Entry))
            return false;
        Map.Entry<K,V> e = (Map.Entry<K,V>) o;
        Entry<K,V> candidate = getEntry(e.getKey());
        return candidate != null && candidate.equals(e);
    }
    public boolean remove(Object o) {
        return removeMapping(o) != null;
    }
    public int size() {
        return size;
    }
    public void clear() {
        HashMap.this.clear();
    }
}

HashMap是通過拉鍊法實現的散列表。表現在HashMap包括許多的Entry,而每一個Entry本質上又是一個單向鏈表。那麼HashMap遍歷key-value鍵值對的時候,是如何逐個去遍歷的呢?


下面我們就看看HashMap是如何通過entrySet()遍歷的。
entrySet()實際上是通過newEntryIterator()實現的。 下面我們看看它的代碼:

// 返回一個“entry迭代器”
Iterator<Map.Entry<K,V>> newEntryIterator()   {
    return new EntryIterator();
}

// Entry的迭代器
private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
    public Map.Entry<K,V> next() {
        return nextEntry();
    }
}

// HashIterator是HashMap迭代器的抽象出來的父類,實現了公共了函數。
// 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3個子類。
private abstract class HashIterator<E> implements Iterator<E> {
    // 下一個元素
    Entry<K,V> next;
    // expectedModCount用於實現fast-fail機制。
    int expectedModCount;
    // 當前索引
    int index;
    // 當前元素
    Entry<K,V> current;

    HashIterator() {
        expectedModCount = modCount;
        if (size > 0) { // advance to first entry
            Entry[] t = table;
            // 將next指向table中第一個不爲null的元素。
            // 這裏利用了index的初始值爲0,從0開始依次向後遍歷,直到找到不爲null的元素就退出循環。
            while (index < t.length && (next = t[index++]) == null)
                ;
        }
    }

    public final boolean hasNext() {
        return next != null;
    }

    // 獲取下一個元素
    final Entry<K,V> nextEntry() {
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        Entry<K,V> e = next;
        if (e == null)
            throw new NoSuchElementException();

        // 注意!!!
        // 一個Entry就是一個單向鏈表
        // 若該Entry的下一個節點不爲空,就將next指向下一個節點;
        // 否則,將next指向下一個鏈表(也是下一個Entry)的不爲null的節點。
        if ((next = e.next) == null) {
            Entry[] t = table;
            while (index < t.length && (next = t[index++]) == null)
                ;
        }
        current = e;
        return e;
    }

    // 刪除當前元素
    public void remove() {
        if (current == null)
            throw new IllegalStateException();
        if (modCount != expectedModCount)
            throw new ConcurrentModificationException();
        Object k = current.key;
        current = null;
        HashMap.this.removeEntryForKey(k);
        expectedModCount = modCount;
    }

}

當我們通過entrySet()獲取到的Iterator的next()方法去遍歷HashMap時,實際上調用的是 nextEntry() 。而nextEntry()的實現方式,先遍歷Entry(根據Entry在table中的序號,從小到大的遍歷);然後對每個Entry(即每個單向鏈表),逐個遍歷。


3.3.5 get()

get() 的作用是獲取key對應的value,它的實現代碼如下:

public V get(Object key) {
    if (key == null)
        return getForNullKey();
    // 獲取key的hash值
    int hash = hash(key.hashCode());
    // 在“該hash值對應的鏈表”上查找“鍵值等於key”的元素
    for (Entry<K,V> e = table[indexFor(hash, table.length)];
         e != null;
         e = e.next) {
        Object k;
        if (e.hash == hash && ((k = e.key) == key || key.equals(k)))
            return e.value;
    }
    return null;
}

3.3.6 put()

put() 的作用是對外提供接口,讓HashMap對象可以通過put()將“key-value”添加到HashMap中

public V put(K key, V value) {
    // 若“key爲null”,則將該鍵值對添加到table[0]中。
    if (key == null)
        return putForNullKey(value);
    // 若“key不爲null”,則計算該key的哈希值,然後將其添加到該哈希值對應的鏈表中。
    int hash = hash(key.hashCode());
    int i = indexFor(hash, table.length);
    for (Entry<K,V> e = table[i]; e != null; e = e.next) {
        Object k;
        // 若“該key”對應的鍵值對已經存在,則用新的value取代舊的value。然後退出!
        if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
            V oldValue = e.value;
            e.value = value;
            e.recordAccess(this);
            return oldValue;
        }
    }

    // 若“該key”對應的鍵值對不存在,則將“key-value”添加到table中
    modCount++;
    addEntry(hash, key, value, i);
    return null;
}

若要添加到HashMap中的鍵值對對應的key已經存在HashMap中,則找到該鍵值對;然後新的value取代舊的value,並退出!
若要添加到HashMap中的鍵值對對應的key不在HashMap中,則將其添加到該哈希值對應的鏈表中,並調用addEntry()。
下面看看addEntry()的代碼:

void addEntry(int hash, K key, V value, int bucketIndex) {
    // 保存“bucketIndex”位置的值到“e”中
    Entry<K,V> e = table[bucketIndex];
    // 設置“bucketIndex”位置的元素爲“新Entry”,
    // 設置“e”爲“新Entry的下一個節點”
    table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
    // 若HashMap的實際大小 不小於 “閾值”,則調整HashMap的大小
    if (size++ >= threshold)
        resize(2 * table.length);
}

addEntry() 的作用是新增Entry。將“key-value”插入指定位置,bucketIndex是位置索引。

說到addEntry(),就不得不說另一個函數createEntry()。createEntry()的代碼如下:

void createEntry(int hash, K key, V value, int bucketIndex) {
    // 保存“bucketIndex”位置的值到“e”中
    Entry<K,V> e = table[bucketIndex];
    // 設置“bucketIndex”位置的元素爲“新Entry”,
    // 設置“e”爲“新Entry的下一個節點”
    table[bucketIndex] = new Entry<K,V>(hash, key, value, e);
    size++;
}

它們的作用都是將key、value添加到HashMap中。而且,比較addEntry()和createEntry()的代碼,我們發現addEntry()多了兩句:

if (size++ >= threshold)
    resize(2 * table.length);

那它們的區別到底是什麼呢?
閱讀代碼,我們可以發現,它們的使用情景不同。
(01) addEntry()一般用在 新增Entry可能導致“HashMap的實際容量”超過“閾值”的情況下。
       例如,我們新建一個HashMap,然後不斷通過put()向HashMap中添加元素;put()是通過addEntry()新增Entry的。
       在這種情況下,我們不知道何時“HashMap的實際容量”會超過“閾值”;
       因此,需要調用addEntry()
(02) createEntry() 一般用在 新增Entry不會導致“HashMap的實際容量”超過“閾值”的情況下。
        例如,我們調用HashMap“帶有Map”的構造函數,它繪將Map的全部元素添加到HashMap中;
       但在添加之前,我們已經計算好“HashMap的容量和閾值”。也就是,可以確定“即使將Map中的全部元素添加到HashMap中,都不會超過HashMap的閾值”。
       此時,調用createEntry()即可。

 

3.3.7 putAll()

putAll() 的作用是將"m"的全部元素都添加到HashMap中,它的代碼如下:

public void putAll(Map<? extends K, ? extends V> m) {
    // 有效性判斷
    int numKeysToBeAdded = m.size();
    if (numKeysToBeAdded == 0)
        return;

    // 計算容量是否足夠,
    // 若“當前實際容量 < 需要的容量”,則將容量x2。
    if (numKeysToBeAdded > threshold) {
        int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
        if (targetCapacity > MAXIMUM_CAPACITY)
            targetCapacity = MAXIMUM_CAPACITY;
        int newCapacity = table.length;
        while (newCapacity < targetCapacity)
            newCapacity <<= 1;
        if (newCapacity > table.length)
            resize(newCapacity);
    }

    // 通過迭代器,將“m”中的元素逐個添加到HashMap中。
    for (Iterator<? extends Map.Entry<? extends K, ? extends V>> i = m.entrySet().iterator(); i.hasNext(); ) {
        Map.Entry<? extends K, ? extends V> e = i.next();
        put(e.getKey(), e.getValue());
    }
}

3.3.8 remove()

remove() 的作用是刪除“鍵爲key”元素

public V remove(Object key) {
    Entry<K,V> e = removeEntryForKey(key);
    return (e == null ? null : e.value);
}


// 刪除“鍵爲key”的元素
final Entry<K,V> removeEntryForKey(Object key) {
    // 獲取哈希值。若key爲null,則哈希值爲0;否則調用hash()進行計算
    int hash = (key == null) ? 0 : hash(key.hashCode());
    int i = indexFor(hash, table.length);
    Entry<K,V> prev = table[i];
    Entry<K,V> e = prev;

    // 刪除鏈表中“鍵爲key”的元素
    // 本質是“刪除單向鏈表中的節點”
    while (e != null) {
        Entry<K,V> next = e.next;
        Object k;
        if (e.hash == hash &&
            ((k = e.key) == key || (key != null && key.equals(k)))) {
            modCount++;
            size--;
            if (prev == e)
                table[i] = next;
            else
                prev.next = next;
            e.recordRemoval(this);
            return e;
        }
        prev = e;
        e = next;
    }

    return e;
}

第3.4部分 HashMap實現的Cloneable接口

HashMap實現了Cloneable接口,即實現了clone()方法。
clone()方法的作用很簡單,就是克隆一個HashMap對象並返回。

// 克隆一個HashMap,並返回Object對象
public Object clone() {
    HashMap<K,V> result = null;
    try {
        result = (HashMap<K,V>)super.clone();
    } catch (CloneNotSupportedException e) {
        // assert false;
    }
    result.table = new Entry[table.length];
    result.entrySet = null;
    result.modCount = 0;
    result.size = 0;
    result.init();
    // 調用putAllForCreate()將全部元素添加到HashMap中
    result.putAllForCreate(this);

    return result;
}

第3.5部分 HashMap實現的Serializable接口

HashMap實現java.io.Serializable,分別實現了串行讀取、寫入功能。
串行寫入函數是writeObject(),它的作用是將HashMap的“總的容量,實際容量,所有的Entry”都寫入到輸出流中。
而串行讀取函數是readObject(),它的作用是將HashMap的“總的容量,實際容量,所有的Entry”依次讀出

// java.io.Serializable的寫入函數
// 將HashMap的“總的容量,實際容量,所有的Entry”都寫入到輸出流中
private void writeObject(java.io.ObjectOutputStream s)
    throws IOException
{
    Iterator<Map.Entry<K,V>> i =
        (size > 0) ? entrySet0().iterator() : null;

    // Write out the threshold, loadfactor, and any hidden stuff
    s.defaultWriteObject();

    // Write out number of buckets
    s.writeInt(table.length);

    // Write out size (number of Mappings)
    s.writeInt(size);

    // Write out keys and values (alternating)
    if (i != null) {
        while (i.hasNext()) {
        Map.Entry<K,V> e = i.next();
        s.writeObject(e.getKey());
        s.writeObject(e.getValue());
        }
    }
}

// java.io.Serializable的讀取函數:根據寫入方式讀出
// 將HashMap的“總的容量,實際容量,所有的Entry”依次讀出
private void readObject(java.io.ObjectInputStream s)
     throws IOException, ClassNotFoundException
{
    // Read in the threshold, loadfactor, and any hidden stuff
    s.defaultReadObject();

    // Read in number of buckets and allocate the bucket array;
    int numBuckets = s.readInt();
    table = new Entry[numBuckets];

    init();  // Give subclass a chance to do its thing.

    // Read in size (number of Mappings)
    int size = s.readInt();

    // Read the keys and values, and put the mappings in the HashMap
    for (int i=0; i<size; i++) {
        K key = (K) s.readObject();
        V value = (V) s.readObject();
        putForCreate(key, value);
    }
}

第4部分 HashMap遍歷方式

4.1 遍歷HashMap的鍵值對

第一步:根據entrySet()獲取HashMap的“鍵值對”的Set集合。
第二步:通過Iterator迭代器遍歷“第一步”得到的集合。

// 假設map是HashMap對象
// map中的key是String類型,value是Integer類型
Integer integ = null;
Iterator iter = map.entrySet().iterator();
while(iter.hasNext()) {
    Map.Entry entry = (Map.Entry)iter.next();
    // 獲取key
    key = (String)entry.getKey();
        // 獲取value
    integ = (Integer)entry.getValue();
}

4.2 遍歷HashMap的鍵

第一步:根據keySet()獲取HashMap的“鍵”的Set集合。
第二步:通過Iterator迭代器遍歷“第一步”得到的集合。

// 假設map是HashMap對象
// map中的key是String類型,value是Integer類型
String key = null;
Integer integ = null;
Iterator iter = map.keySet().iterator();
while (iter.hasNext()) {
        // 獲取key
    key = (String)iter.next();
        // 根據key,獲取value
    integ = (Integer)map.get(key);
}

4.3 遍歷HashMap的值

第一步:根據value()獲取HashMap的“值”的集合。
第二步:通過Iterator迭代器遍歷“第一步”得到的集合。

// 假設map是HashMap對象
// map中的key是String類型,value是Integer類型
Integer value = null;
Collection c = map.values();
Iterator iter= c.iterator();
while (iter.hasNext()) {
    value = (Integer)iter.next();
}

遍歷測試程序如下

import java.util.Map;
import java.util.Random;
import java.util.Iterator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map.Entry;
import java.util.Collection;

/*
 * @desc 遍歷HashMap的測試程序。
 *   (01) 通過entrySet()去遍歷key、value,參考實現函數:
 *        iteratorHashMapByEntryset()
 *   (02) 通過keySet()去遍歷key、value,參考實現函數:
 *        iteratorHashMapByKeyset()
 *   (03) 通過values()去遍歷value,參考實現函數:
 *        iteratorHashMapJustValues()
 *
 * @author skywang
 */
public class HashMapIteratorTest {

    public static void main(String[] args) {
        int val = 0;
        String key = null;
        Integer value = null;
        Random r = new Random();
        HashMap map = new HashMap();

        for (int i=0; i<12; i++) {
            // 隨機獲取一個[0,100)之間的數字
            val = r.nextInt(100);
            
            key = String.valueOf(val);
            value = r.nextInt(5);
            // 添加到HashMap中
            map.put(key, value);
            System.out.println(" key:"+key+" value:"+value);
        }
        // 通過entrySet()遍歷HashMap的key-value
        iteratorHashMapByEntryset(map) ;
        
        // 通過keySet()遍歷HashMap的key-value
        iteratorHashMapByKeyset(map) ;
        
        // 單單遍歷HashMap的value
        iteratorHashMapJustValues(map);        
    }
    
    /*
     * 通過entry set遍歷HashMap
     * 效率高!
     */
    private static void iteratorHashMapByEntryset(HashMap map) {
        if (map == null)
            return ;

        System.out.println("\niterator HashMap By entryset");
        String key = null;
        Integer integ = null;
        Iterator iter = map.entrySet().iterator();
        while(iter.hasNext()) {
            Map.Entry entry = (Map.Entry)iter.next();
            
            key = (String)entry.getKey();
            integ = (Integer)entry.getValue();
            System.out.println(key+" -- "+integ.intValue());
        }
    }

    /*
     * 通過keyset來遍歷HashMap
     * 效率低!
     */
    private static void iteratorHashMapByKeyset(HashMap map) {
        if (map == null)
            return ;

        System.out.println("\niterator HashMap By keyset");
        String key = null;
        Integer integ = null;
        Iterator iter = map.keySet().iterator();
        while (iter.hasNext()) {
            key = (String)iter.next();
            integ = (Integer)map.get(key);
            System.out.println(key+" -- "+integ.intValue());
        }
    }
    

    /*
     * 遍歷HashMap的values
     */
    private static void iteratorHashMapJustValues(HashMap map) {
        if (map == null)
            return ;
        
        Collection c = map.values();
        Iterator iter= c.iterator();
        while (iter.hasNext()) {
            System.out.println(iter.next());
       }
    }
}

第5部分 HashMap示例

下面通過一個實例學習如何使用HashMap

import java.util.Map;
import java.util.Random;
import java.util.Iterator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Map.Entry;
import java.util.Collection;

/*
 * @desc HashMap測試程序
 *        
 * @author skywang
 */
public class HashMapTest {

    public static void main(String[] args) {
        testHashMapAPIs();
    }
    
    private static void testHashMapAPIs() {
        // 初始化隨機種子
        Random r = new Random();
        // 新建HashMap
        HashMap map = new HashMap();
        // 添加操作
        map.put("one", r.nextInt(10));
        map.put("two", r.nextInt(10));
        map.put("three", r.nextInt(10));

        // 打印出map
        System.out.println("map:"+map );

        // 通過Iterator遍歷key-value
        Iterator iter = map.entrySet().iterator();
        while(iter.hasNext()) {
            Map.Entry entry = (Map.Entry)iter.next();
            System.out.println("next : "+ entry.getKey() +" - "+entry.getValue());
        }

        // HashMap的鍵值對個數        
        System.out.println("size:"+map.size());

        // containsKey(Object key) :是否包含鍵key
        System.out.println("contains key two : "+map.containsKey("two"));
        System.out.println("contains key five : "+map.containsKey("five"));

        // containsValue(Object value) :是否包含值value
        System.out.println("contains value 0 : "+map.containsValue(new Integer(0)));

        // remove(Object key) : 刪除鍵key對應的鍵值對
        map.remove("three");

        System.out.println("map:"+map );

        // clear() : 清空HashMap
        map.clear();

        // isEmpty() : HashMap是否爲空
        System.out.println((map.isEmpty()?"map is empty":"map is not empty") );
    }
}

 (某一次)運行結果:

map:{two=7, one=9, three=6}
next : two - 7
next : one - 9
next : three - 6
size:3
contains key two : true
contains key five : false
contains value 0 : false
map:{two=7, one=9}
map is empty

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章