數據清洗與準備 (pandas)

作者:SeanCheney
鏈接:https://www.jianshu.com/p/ac7bec000dad#
把其中較爲重要部分做了篩選便於查看

與處理缺失值相關的api

這裏寫圖片描述

濾除缺失數據

過濾掉缺失數據的辦法有很多種。你可以通過pandas.isnull或布爾索引的手工方法,但dropna可能會更實用一些。對於一個Series,dropna返回一個僅含非空數據和索引值的Series:

In [15]: from numpy import nan as NA

In [16]: data = pd.Series([1, NA, 3.5, NA, 7])

In [17]: data.dropna()
Out[17]: 
0    1.0
2    3.5
4    7.0
dtype: float64
這等價於:

In [18]: data[data.notnull()]
Out[18]: 
0    1.0
2    3.5
4    7.0
dtype: float64

而對於DataFrame對象,事情就有點複雜了。你可能希望丟棄全NA或含有NA的行或列。dropna默認丟棄任何含有缺失值的行:
傳入how=’all’將只丟棄全爲NA的那些行:
用這種方式丟棄列,只需傳入axis=1和how=’all’即可:

In [24]: data[4] = NA

In [25]: data
Out[25]: 
     0    1    2   4
0  1.0  6.5  3.0 NaN
1  1.0  NaN  NaN NaN
2  NaN  NaN  NaN NaN
3  NaN  6.5  3.0 NaN

In [26]: data.dropna(axis=1, how='all')
Out[26]: 
     0    1    2
0  1.0  6.5  3.0
1  1.0  NaN  NaN
2  NaN  NaN  NaN
3  NaN  6.5  3.0

另一個濾除DataFrame行的問題涉及時間序列數據。假設你只想留下一部分觀測數據,可以用thresh參數實現此目的:

這個thresh的參數意思是不爲空的行數有多少行的話就保留, thresh = 2非NA值的數據多於2時,這一列就保留

In [27]: df = pd.DataFrame(np.random.randn(7, 3))

In [28]: df.iloc[:4, 1] = NA

In [29]: df.iloc[:2, 2] = NA

In [30]: df
Out[30]: 
          0         1         2
0 -0.204708       NaN       NaN
1 -0.555730       NaN       NaN
2  0.092908       NaN  0.769023
3  1.246435       NaN -1.296221
4  0.274992  0.228913  1.352917
5  0.886429 -2.001637 -0.371843
6  1.669025 -0.438570 -0.539741

In [31]: df.dropna()
Out[31]: 
          0         1         2
4  0.274992  0.228913  1.352917
5  0.886429 -2.001637 -0.371843
6  1.669025 -0.438570 -0.539741

In [32]: df.dropna(thresh=2)
Out[32]: 
          0         1         2
2  0.092908       NaN  0.769023
3  1.246435       NaN -1.296221
4  0.274992  0.228913  1.352917
5  0.886429 -2.001637 -0.371843
6  1.669025 -0.438570 -0.539741

填充缺失數據

你可能不想濾除缺失數據(有可能會丟棄跟它有關的其他數據),而是希望通過其他方式填補那些“空洞”。對於大多數情況而言,fillna方法是最主要的函數。通過一個常數調用fillna就會將缺失值替換爲那個常數值:

In [33]: df.fillna(0)
Out[33]: 
          0         1         2
0 -0.204708  0.000000  0.000000
1 -0.555730  0.000000  0.000000
2  0.092908  0.000000  0.769023
3  1.246435  0.000000 -1.296221
4  0.274992  0.228913  1.352917
5  0.886429 -2.001637 -0.371843
6  1.669025 -0.438570 -0.539741

若是通過一個字典調用fillna,就可以實現對不同的列填充不同的值:

In [34]: df.fillna({1: 0.5, 2: 0})
Out[34]: 
          0         1         2
0 -0.204708  0.500000  0.000000
1 -0.555730  0.500000  0.000000
2  0.092908  0.500000  0.769023
3  1.246435  0.500000 -1.296221
4  0.274992  0.228913  1.352917
5  0.886429 -2.001637 -0.371843
6  1.669025 -0.438570 -0.539741

fillna默認會返回新對象,但也可以對現有對象進行就地修改:

In [35]: _ = df.fillna(0, inplace=True)

對reindexing有效的那些插值方法也可用於fillna:

In [37]: df = pd.DataFrame(np.random.randn(6, 3))

In [38]: df.iloc[2:, 1] = NA

In [39]: df.iloc[4:, 2] = NA

In [40]: df
Out[40]: 
          0         1         2
0  0.476985  3.248944 -1.021228
1 -0.577087  0.124121  0.302614
2  0.523772       NaN  1.343810
3 -0.713544       NaN -2.370232
4 -1.860761       NaN       NaN
5 -1.265934       NaN       NaN

In [41]: df.fillna(method='ffill')
Out[41]: 
          0         1         2
0  0.476985  3.248944 -1.021228
1 -0.577087  0.124121  0.302614
2  0.523772  0.124121  1.343810
3 -0.713544  0.124121 -2.370232
4 -1.860761  0.124121 -2.370232
5 -1.265934  0.124121 -2.370232

In [42]: df.fillna(method='ffill', limit=2)
Out[42]: 
          0         1         2
0  0.476985  3.248944 -1.021228
1 -0.577087  0.124121  0.302614
2  0.523772  0.124121  1.343810
3 -0.713544  0.124121 -2.370232
4 -1.860761       NaN -2.370232
5 -1.265934       NaN -2.370232

只要有些創新,你就可以利用fillna實現許多別的功能。比如說,你可以傳入Series的平均值或中位數:

In [43]: data = pd.Series([1., NA, 3.5, NA, 7])

In [44]: data.fillna(data.mean())
Out[44]: 
0    1.000000
1    3.833333
2    3.500000
3    3.833333
4    7.000000
dtype: float64

移除重複數據
DataFrame中出現重複行有多種原因。下面就是一個例子:

In [45]: data = pd.DataFrame({'k1': ['one', 'two'] * 3 + ['two'],
   ....:                      'k2': [1, 1, 2, 3, 3, 4, 4]})

In [46]: data
Out[46]: 
    k1  k2
0  one   1
1  two   1
2  one   2
3  two   3
4  one   3
5  two   4
6  two   4

DataFrame的duplicated方法返回一個布爾型Series,表示各行是否是重複行(前面出現過的行):

In [47]: data.duplicated()
Out[47]: 
0    False
1    False
2    False
3    False
4    False
5    False
6     True
dtype: bool

還有一個與此相關的drop_duplicates方法,它會返回一個DataFrame,重複的數組會標爲False:

In [48]: data.drop_duplicates()
Out[48]: 
    k1  k2
0  one   1
1  two   1
2  one   2
3  two   3
4  one   3
5  two   4

這兩個方法默認會判斷全部列,你也可以指定部分列進行重複項判斷。假設我們還有一列值,且只希望根據k1列過濾重複項:

In [49]: data['v1'] = range(7)

In [50]: data.drop_duplicates(['k1'])
Out[50]: 
    k1  k2  v1
0  one   1   0
1  two   1   1

duplicated和drop_duplicates默認保留的是第一個出現的值組合。傳入keep=’last’則保留最後一個:

In [51]: data.drop_duplicates(['k1', 'k2'], keep='last')
Out[51]: 
    k1  k2  v1
0  one   1   0
1  two   1   1
2  one   2   2
3  two   3   3
4  one   3   4
6  two   4   6

利用函數或映射進行數據轉換

對於許多數據集,你可能希望根據數組、Series或DataFrame列中的值來實現轉換工作。我們來看看下面這組有關肉類的數據:

In [53]: data
Out[53]: 
          food  ounces
0        bacon     4.0
1  pulled pork     3.0
2        bacon    12.0
3     Pastrami     6.0
4  corned beef     7.5
5        Bacon     8.0
6     pastrami     3.0
7    honey ham     5.0
8     nova lox     6.0

假設你想要添加一列表示該肉類食物來源的動物類型。我們先編寫一個不同肉類到動物的映射:

meat_to_animal = {
  'bacon': 'pig',
  'pulled pork': 'pig',
  'pastrami': 'cow',
  'corned beef': 'cow',
  'honey ham': 'pig',
  'nova lox': 'salmon'
}

我們可以傳入一個能夠完成全部這些工作的函數:

In [59]: 
data['food'].map(lambda x: meat_to_animal[x.lower()])
Out[59]: 
0       pig
1       pig
2       pig
3       cow
4       cow
5       pig
6       cow
7       pig
8    salmon
Name: food, dtype: object

使用map是一種實現元素級轉換以及其他數據清理工作的便捷方式。

要讓每個值有不同的替換值,可以傳遞一個替換列表:

替換值

如果你希望一次性替換多個值,可以傳入一個由待替換值組成的列表以及一個替換值::


In [63]: data.replace([-999, -1000], np.nan)
Out[63]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    NaN
5    3.0
dtype: float64
In [64]: data.replace([-999, -1000], [np.nan, 0])
Out[64]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64

傳入的參數也可以是字典:

In [65]: data.replace({-999: np.nan, -1000: 0})
Out[65]: 
0    1.0
1    NaN
2    2.0
3    NaN
4    0.0
5    3.0
dtype: float64

data.replace方法與data.str.replace不同,後者做的是字符串的元素級替換。我們會在後面學習Series的字符串方法。

重命名軸索引

如果想要創建數據集的轉換版(而不是修改原始數據),比較實用的方法是rename:

In [71]: data.rename(index=str.title, columns=str.upper)
Out[71]: 
      ONE  TWO  THREE  FOUR
Ohio    0    1      2     3
Colo    4    5      6     7
New     8    9     10    11

特別說明一下,rename可以結合字典型對象實現對部分軸標籤的更新:

In [72]: data.rename(index={'OHIO': 'INDIANA'},
   ....:             columns={'three': 'peekaboo'})
Out[72]:
one  two  peekaboo  four
INDIANA    0    1         2     3
COLO       4    5         6     7
NEW        8    9        10    11

rename可以實現複製DataFrame並對其索引和列標籤進行賦值。如果希望就地修改某個數據集,傳入inplace=True即可:

In [73]: 
data.rename(index={'OHIO': 'INDIANA'}, inplace=True)

In [74]: data
Out[74]: 
         one  two  three  four
INDIANA    0    1      2     3
COLO       4    5      6     7
NEW        8    9     10    11

離散化和麪元劃分(重)

爲了便於分析,連續數據常常被離散化或拆分爲“面元”(bin)。假設有一組人員數據,而你希望將它們劃分爲不同的年齡組:

In [75]: ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32]

接下來將這些數據劃分爲“18到25”、“26到35”、“35到60”以及“60以上”幾個面元。要實現該功能,你需要使用pandas的cut函數:

In [76]: bins = [18, 25, 35, 60, 100]

In [77]: cats = pd.cut(ages, bins)

In [78]: cats
Out[78]: 
[(18, 25], (18, 25], (18, 25], (25, 35], (18, 25], ..., (25, 35], (60, 100], (35,60], (35, 60], (25, 35]]
Length: 12
Categories (4, interval[int64]): [(18, 25] < (25, 35] < (35, 60] < (60, 100]]

pandas返回的是一個特殊的Categorical對象。結果展示了pandas.cut劃分的面元。你可以將其看做一組表示面元名稱的字符串。它的底層含有一個表示不同分類名稱的類型數組,以及一個codes屬性中的年齡數據的標籤:

In [79]: cats.codes
Out[79]: array([0, 0, 0, 1, 0, 0, 2, 1, 3, 2, 2, 1], dtype=int8)

In [80]: cats.categories
Out[80]: 
IntervalIndex([(18, 25], (25, 35], (35, 60], (60, 100]]
              closed='right',
              dtype='interval[int64]')

In [81]: pd.value_counts(cats)
Out[81]: 
(18, 25]     5
(35, 60]     3
(25, 35]     3
(60, 100]    1
dtype: int64

pd.value_counts(cats)是pandas.cut結果的面元計數。

跟“區間”的數學符號一樣,圓括號表示開端,而方括號則表示閉端(包括)。哪邊是閉端可以通過right=False進行修改:

In [82]: pd.cut(ages, [18, 26, 36, 61, 100], right=False)
Out[82]: 
[[18, 26), [18, 26), [18, 26), [26, 36), [18, 26), ..., [26, 36), [61, 100), [36,
 61), [36, 61), [26, 36)]
Length: 12
Categories (4, interval[int64]): [[18, 26) < [26, 36) < [36, 61) < [61, 100)]

你可 以通過傳遞一個列表或數組到labels,設置自己的面元名稱:
這個列表長度要跟分的組的類別數一樣多

In [83]: group_names = ['Youth', 'YoungAdult', 'MiddleAged', 'Senior']

In [84]: pd.cut(ages, bins, labels=group_names)
Out[84]: 
[Youth, Youth, Youth, YoungAdult, Youth, ..., YoungAdult, Senior, MiddleAged, Mid
dleAged, YoungAdult]
Length: 12
Categories (4, object): [Youth < YoungAdult < MiddleAged < Senior]

如果向cut傳入的是面元的數量而不是確切的面元邊界,則它會根據數據的最小值和最大值計算等長面元。下面這個例子中,我們將一些均勻分佈的數據分成四組:

In [85]: data = np.random.rand(20)

In [86]: pd.cut(data, 4, precision=2)
Out[86]: 
[(0.34, 0.55], (0.34, 0.55], (0.76, 0.97], (0.76, 0.97], (0.34, 0.55], ..., (0.34
, 0.55], (0.34, 0.55], (0.55, 0.76], (0.34, 0.55], (0.12, 0.34]]
Length: 20
Categories (4, interval[float64]): [(0.12, 0.34] < (0.34, 0.55] < (0.55, 0.76] < (0.76, 0.97]]

選項precision=2,限定小數只有兩位。

qcut是一個非常類似於cut的函數,它可以根據樣本分位數對數據進行面元劃分。根據數據的分佈情況,cut可能無法使各個面元中含有相同數量的數據點。而qcut由於使用的是樣本分位數,因此可以得到大小基本相等的面元:

In [87]: data = np.random.randn(1000)  # Normally distributed

In [88]: cats = pd.qcut(data, 4)  # Cut into quartiles

In [89]: cats
Out[89]: 
[(-0.0265, 0.62], (0.62, 3.928], (-0.68, -0.0265], (0.62, 3.928], (-0.0265, 0.62]
, ..., (-0.68, -0.0265], (-0.68, -0.0265], (-2.95, -0.68], (0.62, 3.928], (-0.68,
 -0.0265]]
Length: 1000
Categories (4, interval[float64]): [(-2.95, -0.68] < (-0.68, -0.0265] < (-0.0265,
 0.62] <(0.62, 3.928]]

In [90]: pd.value_counts(cats)
Out[90]:
(0.62, 3.928]       250
(-0.0265, 0.62]     250
(-0.68, -0.0265]    250
(-2.95, -0.68]      250
dtype: int64

與cut類似,你也可以傳遞自定義的分位數(0到1之間的數值,包含端點):

In [91]: pd.qcut(data, [0, 0.1, 0.5, 0.9, 1.])
Out[91]: 
[(-0.0265, 1.286], (-0.0265, 1.286], (-1.187, -0.0265], (-0.0265, 1.286], (-0.026
5, 1.286], ..., (-1.187, -0.0265], (-1.187, -0.0265], (-2.95, -1.187], (-0.0265, 
1.286], (-1.187, -0.0265]]
Length: 1000
Categories (4, interval[float64]): [(-2.95, -1.187] < (-1.187, -0.0265] < (-0.026
5, 1.286] <(1.286, 3.928]]

這兩個離散化函數對分位和分組分析非常重要。

檢測和過濾異常值

過濾或變換異常值(outlier)在很大程度上就是運用數組運算。來看一個含有正態分佈數據的DataFrame:

In [92]: data = pd.DataFrame(np.random.randn(1000, 4))

In [93]: data.describe()
Out[93]: 
                 0            1            2            3
count  1000.000000  1000.000000  1000.000000  1000.000000
mean      0.049091     0.026112    -0.002544    -0.051827
std       0.996947     1.007458     0.995232     0.998311
min      -3.645860    -3.184377    -3.745356    -3.428254
25%      -0.599807    -0.612162    -0.687373    -0.747478
50%       0.047101    -0.013609    -0.022158    -0.088274
75%       0.756646     0.695298     0.699046     0.623331
max       2.653656     3.525865     2.735527     3.366626

假設你想要找出某列中絕對值大小超過3的值:

In [94]: col = data[2]

In [95]: col[np.abs(col) > 3]
Out[95]: 
41    -3.399312
136   -3.745356
Name: 2, dtype: float64

.any()方法是根據傳入的axis:
 如傳入axis = 1,查看每一行中的每一個值都爲True時返回True,返回一個Series,對應每一行給與一個boolean值
傳入axis=0,查看每一列中每一個值都爲True返回True,對應每一列給與一個boolean值如:

In [96]: (np.abs(data) > 3).any(0)
Out[95]: 
0    False
1     True
2     True
3     True
dtype: bool

any方法會產生boolean列表,可以用來配合找出數據中爲True的值
要選出全部含有“超過3或-3的值”的行,你可以在布爾型DataFrame中使用any方法:

In [96]: data[(np.abs(data) > 3).any(1)]
Out[96]: 
            0         1         2         3
41   0.457246 -0.025907 -3.399312 -0.974657
60   1.951312  3.260383  0.963301  1.201206
136  0.508391 -0.196713 -3.745356 -1.520113
235 -0.242459 -3.056990  1.918403 -0.578828
258  0.682841  0.326045  0.425384 -3.428254
322  1.179227 -3.184377  1.369891 -1.074833
544 -3.548824  1.553205 -2.186301  1.277104
635 -0.578093  0.193299  1.397822  3.366626
782 -0.207434  3.525865  0.283070  0.544635
803 -3.645860  0.255475 -0.549574 -1.907459

根據這些條件,就可以對值進行設置。下面的代碼可以將值限制在區間-3到3以內:

In [97]: data[np.abs(data) > 3] = np.sign(data) * 3

In [98]: data.describe()
Out[98]: 
                 0            1            2            3
count  1000.000000  1000.000000  1000.000000  1000.000000
mean      0.050286     0.025567    -0.001399    -0.051765
std       0.992920     1.004214     0.991414     0.995761
min      -3.000000    -3.000000    -3.000000    -3.000000
25%      -0.599807    -0.612162    -0.687373    -0.747478
50%       0.047101    -0.013609    -0.022158    -0.088274
75%       0.756646     0.695298     0.699046     0.623331
max       2.653656     3.000000     2.735527     3.000000

根據數據的值是正還是負,np.sign(data)可以生成1和-1:

In [99]: np.sign(data).head()
Out[99]: 
     0    1    2    3
0 -1.0  1.0 -1.0  1.0
1  1.0 -1.0  1.0 -1.0
2  1.0  1.0  1.0 -1.0
3 -1.0 -1.0  1.0 -1.0
4 -1.0  1.0 -1.0 -1.0

排列和隨機採樣

利用numpy.random.permutation函數可以輕鬆實現對Series或DataFrame的列的排列工作(permuting,隨機重排序)。通過需要排列的軸的長度調用permutation,可產生一個表示新順序的整數數組:

In [100]: df = pd.DataFrame(np.arange(5 * 4).reshape((5, 4)))

In [101]: sampler = np.random.permutation(5)

In [102]: sampler
Out[102]: array([3, 1, 4, 2, 0])

然後就可以在基於iloc的索引操作或take函數中使用該數組了:

In [103]: df
Out[103]: 
    0   1   2   3
0   0   1   2   3
1   4   5   6   7
2   8   9  10  11
3  12  13  14  15
4  16  17  18  19

In [104]: df.take(sampler)
Out[104]: 
    0   1   2   3
3  12  13  14  15
1   4   5   6   7
4  16  17  18  19
2   8   9  10  11
0   0   1   2   3

如果不想用替換的方式選取隨機子集,可以在Series和DataFrame上使用sample方法:
這裏的n代表選擇n行出來

In [105]: df.sample(n=3)
Out[105]: 
    0   1   2   3
3  12  13  14  15
4  16  17  18  19
2   8   9  10  11

要通過替換的方式產生樣本(允許重複選擇),可以傳遞replace=True到sample:

In [106]: choices = pd.Series([5, 7, -1, 6, 4])

In [107]: draws = choices.sample(n=10, replace=True)

In [108]: draws
Out[108]: 
4    4
1    7
4    4
2   -1
0    5
3    6
1    7
4    4
0    5
4    4
dtype: int64

計算指標/啞變量

另一種常用於統計建模或機器學習的轉換方式是:將分類變量(categorical variable)轉換爲“啞變量”或“指標矩陣”。

如果DataFrame的某一列中含有k個不同的值,則可以派生出一個k列矩陣或DataFrame(其值全爲1和0)。pandas有一個get_dummies函數可以實現該功能(其實自己動手做一個也不難)。使用之前的一個DataFrame例子:

In [109]: df = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
   .....:                    'data1': range(6)})

In [110]: pd.get_dummies(df['key'])
Out[110]: 
   a  b  c
0  0  1  0
1  0  1  0
2  1  0  0
3  0  0  1
4  1  0  0
5  0  1  0

有時候,你可能想給指標DataFrame的列加上一個前綴,以便能夠跟其他數據進行合併。get_dummies的prefix參數可以實現該功能:

In [111]: dummies = pd.get_dummies(df['key'], prefix='key')

In [112]: df_with_dummy = df[['data1']].join(dummies)

In [113]: df_with_dummy
Out[113]: 
   data1  key_a  key_b  key_c
0      0      0      1      0
1      1      0      1      0
2      2      1      0      0
3      3      0      0      1
4      4      1      0      0
5      5      0      1      0

如果DataFrame中的某行同屬於多個分類,則事情就會有點複雜。看一下MovieLens 1M數據集,14章會更深入地研究它:

In [114]: mnames = ['movie_id', 'title', 'genres']

In [115]: movies = pd.read_table('datasets/movielens/movies.dat', sep='::',
   .....:                        header=None, names=mnames)

In [116]: movies[:10]
Out[116]: 
   movie_id                               title                        genres
0         1                    Toy Story (1995)   Animation|Children's|Comedy
1         2                      Jumanji (1995)  Adventure|Children's|Fantasy
2         3             Grumpier Old Men (1995)                Comedy|Romance
3         4            Waiting to Exhale (1995)                  Comedy|Drama
4         5  Father of the Bride Part II (1995)                        Comedy
5         6                         Heat (1995)         Action|Crime|Thriller
6         7                      Sabrina (1995)                Comedy|Romance
7         8                 Tom and Huck (1995)          Adventure|Children's
8         9                 Sudden Death (1995)
Action
9        10                    GoldenEye (1995)     Action|Adventure|Thriller

要爲每個genre添加指標變量就需要做一些數據規整操作。首先,我們從數據集中抽取出不同的genre值:

In [117]: all_genres = []

In [118]: for x in movies.genres:
   .....:     all_genres.extend(x.split('|'))

In [119]: genres = pd.unique(all_genres)

現在有:

In [120]: genres
Out[120]: 
array(['Animation', "Children's", 'Comedy', 'Adventure', 'Fantasy',
       'Romance', 'Drama', 'Action', 'Crime', 'Thriller','Horror',
       'Sci-Fi', 'Documentary', 'War', 'Musical', 'Mystery', 'Film-Noir',
       'Western'], dtype=object)

構建指標DataFrame的方法之一是從一個全零DataFrame開始:

In [121]: zero_matrix = np.zeros((len(movies), len(genres)))

In [122]: dummies = pd.DataFrame(zero_matrix, columns=genres)

現在,迭代每一部電影,並將dummies各行的條目設爲1。要這麼做,我們使用dummies.columns來計算每個類型的列索引:

In [123]: gen = movies.genres[0]

In [124]: gen.split('|')
Out[124]: ['Animation', "Children's", 'Comedy']

In [125]: dummies.columns.get_indexer(gen.split('|'))
Out[125]: array([0, 1, 2])

然後,根據索引,使用.iloc設定值:

In [126]: for i, gen in enumerate(movies.genres):
   .....:     indices = dummies.columns.get_indexer(gen.split('|'))
   .....:     dummies.iloc[i, indices] = 1
   .....:

然後,和以前一樣,再將其與movies合併起來:

In [127]: movies_windic = movies.join(dummies.add_prefix('Genre_'))

In [128]: movies_windic.iloc[0]
Out[128]: 
movie_id                                       1
title                           Toy Story (1995)
genres               Animation|Children's|Comedy
Genre_Animation                                1
Genre_Children's                               1
Genre_Comedy                                   1
Genre_Adventure                                0
Genre_Fantasy                                  0
Genre_Romance                                  0
Genre_Drama                                    0
                                ...             
Genre_Crime                                    0
Genre_Thriller                                 0
Genre_Horror                                   0
Genre_Sci-Fi                                   0
Genre_Documentary                              0
Genre_War                                      0
Genre_Musical                                  0
Genre_Mystery                                  0
Genre_Film-Noir                                0
Genre_Western                                  0
Name: 0, Length: 21, dtype: object

筆記:對於很大的數據,用這種方式構建多成員指標變量就會變得非常慢。最好使用更低級的函數,將其寫入NumPy數組,然後結果包裝在DataFrame中。

一個對統計應用有用的祕訣是:結合get_dummies和諸如cut之類的離散化函數:

In [129]: np.random.seed(12345)

In [130]: values = np.random.rand(10)

In [131]: values
Out[131]: 
array([ 0.9296,  0.3164,  0.1839,  0.2046,  0.5677,  0.5955,  0.9645,
        0.6532,  0.7489,  0.6536])

In [132]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]

In [133]: pd.get_dummies(pd.cut(values, bins))
Out[133]: 
   (0.0, 0.2]  (0.2, 0.4]  (0.4, 0.6]  (0.6, 0.8]  (0.8, 1.0]
0           0           0           0           0           1
1           0           1           0           0           0
2           1           0           0           0           0
3           0           1           0           0           0
4           0           0           1           0           0
5           0           0           1           0           0
6           0           0           0           0           1
7           0           0           0           1           0
8           0           0           0           1           0
9           0           0           0           1           0

正則沒有仔細研究

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章