linux進程地址空間--vma的基本操作

       在32位的系統上,線性地址空間可達到4GB,這4GB一般按照3:1的比例進行分配,也就是說用戶進程享有前3GB線性地址空間,而內核獨享最後1GB線性地址空間。由於虛擬內存的引入,每個進程都可擁有3GB的虛擬內存,並且用戶進程之間的地址空間是互不可見、互不影響的,也就是說即使兩個進程對同一個地址進行操作,也不會產生問題。在前面介紹的一些分配內存的途徑中,無論是夥伴系統中分配頁的函數,還是slab分配器中分配對象的函數,它們都會盡量快速地響應內核的分配請求,將相應的內存提交給內核使用,而內核對待用戶空間顯然不能如此。用戶空間動態申請內存時往往只是獲得一塊線性地址的使用權,而並沒有將這塊線性地址區域與實際的物理內存對應上,只有當用戶空間真正操作申請的內存時,纔會觸發一次缺頁異常,這時內核纔會分配實際的物理內存給用戶空間。

       用戶進程的虛擬地址空間包含了若干區域,這些區域的分佈方式是特定於體系結構的,不過所有的方式都包含下列成分:

  • 可執行文件的二進制代碼,也就是程序的代碼段
  • 存儲全局變量的數據段
  • 用於保存局部變量和實現函數調用的棧
  • 環境變量和命令行參數
  • 程序使用的動態庫的代碼
  • 用於映射文件內容的區域

由此可以看到進程的虛擬內存空間會被分成不同的若干區域,每個區域都有其相關的屬性和用途,一個合法的地址總是落在某個區域當中的,這些區域也不會重疊。在linux內核中,這樣的區域被稱之爲虛擬內存區域(virtual memory areas),簡稱vma。一個vma就是一塊連續的線性地址空間的抽象,它擁有自身的權限(可讀,可寫,可執行等等) ,每一個虛擬內存區域都由一個相關的struct vm_area_struct結構來描述

struct vm_area_struct {
	struct mm_struct * vm_mm;	/* 所屬的內存描述符 */
	unsigned long vm_start;    /* vma的起始地址 */
	unsigned long vm_end;		/* vma的結束地址 */

	/* 該vma的在一個進程的vma鏈表中的前驅vma和後驅vma指針,鏈表中的vma都是按地址來排序的*/
	struct vm_area_struct *vm_next, *vm_prev;

	pgprot_t vm_page_prot;		/* vma的訪問權限 */
	unsigned long vm_flags;    /* 標識集 */

	struct rb_node vm_rb;      /* 紅黑樹中對應的節點 */

	/*
	 * For areas with an address space and backing store,
	 * linkage into the address_space->i_mmap prio tree, or
	 * linkage to the list of like vmas hanging off its node, or
	 * linkage of vma in the address_space->i_mmap_nonlinear list.
	 */
	/* shared聯合體用於和address space關聯 */
	union {
		struct {
			struct list_head list;/* 用於鏈入非線性映射的鏈表 */
			void *parent;	/* aligns with prio_tree_node parent */
			struct vm_area_struct *head;
		} vm_set;

		struct raw_prio_tree_node prio_tree_node;/*線性映射則鏈入i_mmap優先樹*/
	} shared;

	/*
	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
	 * list, after a COW of one of the file pages.	A MAP_SHARED vma
	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
	 * or brk vma (with NULL file) can only be in an anon_vma list.
	 */
	/*anno_vma_node和annon_vma用於管理源自匿名映射的共享頁*/
	struct list_head anon_vma_node;	/* Serialized by anon_vma->lock */
	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */

	/* Function pointers to deal with this struct. */
	/*該vma上的各種標準操作函數指針集*/
	const struct vm_operations_struct *vm_ops;

	/* Information about our backing store: */
	unsigned long vm_pgoff;		/* 映射文件的偏移量,以PAGE_SIZE爲單位 */
	struct file * vm_file;		    /* 映射的文件,沒有則爲NULL */
	void * vm_private_data;		/* was vm_pte (shared mem) */
	unsigned long vm_truncate_count;/* truncate_count or restart_addr */

#ifndef CONFIG_MMU
	struct vm_region *vm_region;	/* NOMMU mapping region */
#endif
#ifdef CONFIG_NUMA
	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
#endif
};


 

進程的若干個vma區域都得按一定的形式組織在一起,這些vma都包含在進程的內存描述符中,也就是struct mm_struct中,這些vma在mm_struct以兩種方式進行組織,一種是鏈表方式,對應於mm_struct中的mmap鏈表頭,一種是紅黑樹方式,對應於mm_struct中的mm_rb根節點,和內核其他地方一樣,鏈表用於遍歷,紅黑樹用於查找。

 

下面以文件映射爲例,來闡述文件的address_space和與其建立映射關係的vma是如何聯繫上的。首先來看看struct address_space中與vma相關的變量

struct address_space {
	struct inode		*host;		/* owner: inode, block_device */
	...
	struct prio_tree_root	i_mmap;		/* tree of private and shared mappings */
	struct list_head	i_mmap_nonlinear;          /*list VM_NONLINEAR mappings */
	...
} __attr


與此同時,struct file和struct inode中都包含有一個struct address_space的指針,分別爲f_mapping和i_mapping。struct file是一個特定於進程的數據結構,而struct inode則是一個特定於文件的數據結構。每當進程打開一個文件時,都會將file->f_mapping設置到inode->i_mapping,下圖則給出了文件和與其建立映射關係的vma的聯繫

 

下面來看幾個vma的基本操作函數,這些函數都是後面實現具體功能的基礎

find_vma()用來尋找一個針對於指定地址的vma,該vma要麼包含了指定的地址,要麼位於該地址之後並且離該地址最近,或者說尋找第一個滿足addr<vma_end的vma

struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
{
	struct vm_area_struct *vma = NULL;

	if (mm) {
		/* Check the cache first. */
		/* (Cache hit rate is typically around 35%.) */
		vma = mm->mmap_cache; //首先嚐試mmap_cache中緩存的vma
		/*如果不滿足下列條件中的任意一個則從紅黑樹中查找合適的vma
		  1.緩存vma不存在
		  2.緩存vma的結束地址小於給定的地址
		  3.緩存vma的起始地址大於給定的地址*/
		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
			struct rb_node * rb_node;

			rb_node = mm->mm_rb.rb_node;//獲取紅黑樹根節點
			vma = NULL;

			while (rb_node) {
				struct vm_area_struct * vma_tmp;

				vma_tmp = rb_entry(rb_node,	  //獲取節點對應的vma
						struct vm_area_struct, vm_rb);

				/*首先確定vma的結束地址是否大於給定地址,如果是的話,再確定
				  vma的起始地址是否小於給定地址,也就是優先保證給定的地址是
				  處於vma的範圍之內的,如果無法保證這點,則只能找到一個距離
				  給定地址最近的vma並且該vma的結束地址要大於給定地址*/
				if (vma_tmp->vm_end > addr) {
					vma = vma_tmp;
					if (vma_tmp->vm_start <= addr)
						break;
					rb_node = rb_node->rb_left;
				} else
					rb_node = rb_node->rb_right;
			}
			if (vma)
				mm->mmap_cache = vma;//將結果保存在緩存中
		}
	}
	return vma;
}


 

當一個新區域被加到進程的地址空間時,內核會檢查它是否可以與一個或多個現存區域合併,vma_merge()函數在可能的情況下,將一個新區域與周邊區域進行合併。參數:

mm:新區域所屬的進程地址空間

prev:在地址上緊接着新區域的前面一個vma

addr:新區域的起始地址

end:新區域的結束地址

vm_flags:新區域的標識集

anon_vma:新區域所屬的匿名映射

file:新區域映射的文件

pgoff:新區域映射文件的偏移

policy:和NUMA相關

 

struct vm_area_struct *vma_merge(struct mm_struct *mm,
			struct vm_area_struct *prev, unsigned long addr,
			unsigned long end, unsigned long vm_flags,
		     	struct anon_vma *anon_vma, struct file *file,
			pgoff_t pgoff, struct mempolicy *policy)
{
	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
	struct vm_area_struct *area, *next;

	/*
	 * We later require that vma->vm_flags == vm_flags,
	 * so this tests vma->vm_flags & VM_SPECIAL, too.
	 */
	if (vm_flags & VM_SPECIAL)
		return NULL;

	if (prev)//指定了先驅vma,則獲取先驅vma的後驅vma
		next = prev->vm_next;
	else     //否則指定mm的vma鏈表中的第一個元素爲後驅vma
		next = mm->mmap;
	area = next;

	/*後驅節點存在,並且後驅vma的結束地址和給定區域的結束地址相同,
	  也就是說兩者有重疊,那麼調整後驅vma*/
	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
		next = next->vm_next;

	/*
	 * 先判斷給定的區域能否和前驅vma進行合併,需要判斷如下的幾個方面:
	   1.前驅vma必須存在
	   2.前驅vma的結束地址正好等於給定區域的起始地址
	   3.兩者的struct mempolicy中的相關屬性要相同,這項檢查只對NUMA架構有意義
	   4.其他相關項必須匹配,包括兩者的vm_flags,是否映射同一個文件等等
	 */
	if (prev && prev->vm_end == addr &&
  			mpol_equal(vma_policy(prev), policy) &&
			can_vma_merge_after(prev, vm_flags,
						anon_vma, file, pgoff)) {
		/*
		 *確定可以和前驅vma合併後再判斷是否能和後驅vma合併,判斷方式和前面一樣,
		  不過這裏多了一項檢查,在給定區域能和前驅、後驅vma合併的情況下還要檢查
		  前驅、後驅vma的匿名映射可以合併
		 */
		if (next && end == next->vm_start &&
				mpol_equal(policy, vma_policy(next)) &&
				can_vma_merge_before(next, vm_flags,
					anon_vma, file, pgoff+pglen) &&
				is_mergeable_anon_vma(prev->anon_vma,
						      next->anon_vma)) {
							/* cases 1, 6 */
			vma_adjust(prev, prev->vm_start,
				next->vm_end, prev->vm_pgoff, NULL);
		} else					/* cases 2, 5, 7 */
			vma_adjust(prev, prev->vm_start,
				end, prev->vm_pgoff, NULL);
		return prev;
	}

	/*
	 * Can this new request be merged in front of next?
	 */
	 /*如果前面的步驟失敗,那麼則從後驅vma開始進行和上面類似的步驟*/
	if (next && end == next->vm_start &&
 			mpol_equal(policy, vma_policy(next)) &&
			can_vma_merge_before(next, vm_flags,
					anon_vma, file, pgoff+pglen)) {
		if (prev && addr < prev->vm_end)	/* case 4 */
			vma_adjust(prev, prev->vm_start,
				addr, prev->vm_pgoff, NULL);
		else					/* cases 3, 8 */
			vma_adjust(area, addr, next->vm_end,
				next->vm_pgoff - pglen, NULL);
		return area;
	}

	return NULL;
}


vma_adjust會執行具體的合併調整操作

void vma_adjust(struct vm_area_struct *vma, unsigned long start,
	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
{
	struct mm_struct *mm = vma->vm_mm;
	struct vm_area_struct *next = vma->vm_next;
	struct vm_area_struct *importer = NULL;
	struct address_space *mapping = NULL;
	struct prio_tree_root *root = NULL;
	struct file *file = vma->vm_file;
	struct anon_vma *anon_vma = NULL;
	long adjust_next = 0;
	int remove_next = 0;

	if (next && !insert) {
		/*指定的範圍已經跨越了整個後驅vma,並且有可能超過後驅vma*/
		if (end >= next->vm_end) {
			/*
			 * vma expands, overlapping all the next, and
			 * perhaps the one after too (mprotect case 6).
			 */
again:			remove_next = 1 + (end > next->vm_end);//確定是否超過了後驅vma
			end = next->vm_end;
			anon_vma = next->anon_vma;
			importer = vma;
		} else if (end > next->vm_start) {/*指定的區域和後驅vma部分重合*/
		
			/*
			 * vma expands, overlapping part of the next:
			 * mprotect case 5 shifting the boundary up.
			 */
			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
			anon_vma = next->anon_vma;
			importer = vma;
		} else if (end < vma->vm_end) {/*指定的區域沒到達後驅vma的結束處*/
			/*
			 * vma shrinks, and !insert tells it's not
			 * split_vma inserting another: so it must be
			 * mprotect case 4 shifting the boundary down.
			 */
			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
			anon_vma = next->anon_vma;
			importer = next;
		}
	}

	if (file) {//如果有映射文件
		mapping = file->f_mapping;//獲取文件對應的address_space
		if (!(vma->vm_flags & VM_NONLINEAR))
			root = &mapping->i_mmap;
		spin_lock(&mapping->i_mmap_lock);
		if (importer &&
		    vma->vm_truncate_count != next->vm_truncate_count) {
			/*
			 * unmap_mapping_range might be in progress:
			 * ensure that the expanding vma is rescanned.
			 */
			importer->vm_truncate_count = 0;
		}
		/*如果指定了待插入的vma,則根據vma是否以非線性的方式映射文件來選擇是將
		vma插入file對應的address_space的優先樹(對應線性映射)還是雙向鏈表(非線性映射)*/
		if (insert) {
			insert->vm_truncate_count = vma->vm_truncate_count;
			/*
			 * Put into prio_tree now, so instantiated pages
			 * are visible to arm/parisc __flush_dcache_page
			 * throughout; but we cannot insert into address
			 * space until vma start or end is updated.
			 */
			__vma_link_file(insert);
		}
	}

	/*
	 * When changing only vma->vm_end, we don't really need
	 * anon_vma lock.
	 */
	if (vma->anon_vma && (insert || importer || start != vma->vm_start))
		anon_vma = vma->anon_vma;
	if (anon_vma) {
		spin_lock(&anon_vma->lock);
		/*
		 * Easily overlooked: when mprotect shifts the boundary,
		 * make sure the expanding vma has anon_vma set if the
		 * shrinking vma had, to cover any anon pages imported.
		 */
		if (importer && !importer->anon_vma) {
			importer->anon_vma = anon_vma;
			__anon_vma_link(importer);//將importer插入importer的anon_vma匿名映射鏈表中
		}
	}

	if (root) {
		flush_dcache_mmap_lock(mapping);
		vma_prio_tree_remove(vma, root);
		if (adjust_next)
			vma_prio_tree_remove(next, root);
	}

	/*調整vma的相關量*/
	vma->vm_start = start;
	vma->vm_end = end;
	vma->vm_pgoff = pgoff;
	if (adjust_next) {//調整後驅vma的相關量
		next->vm_start += adjust_next << PAGE_SHIFT;
		next->vm_pgoff += adjust_next;
	}

	if (root) {
		if (adjust_next)//如果後驅vma被調整了,則重新插入到優先樹中
			vma_prio_tree_insert(next, root);
		vma_prio_tree_insert(vma, root);//將vma插入到優先樹中
		flush_dcache_mmap_unlock(mapping);
	}

	if (remove_next) {//給定區域與後驅vma有重合
		/*
		 * vma_merge has merged next into vma, and needs
		 * us to remove next before dropping the locks.
		 */
		__vma_unlink(mm, next, vma);//將後驅vma從紅黑樹中刪除
		if (file)//將後驅vma從文件對應的address space中刪除
			__remove_shared_vm_struct(next, file, mapping);
		if (next->anon_vma)//將後驅vma從匿名映射鏈表中刪除
			__anon_vma_merge(vma, next);
	} else if (insert) {
		/*
		 * split_vma has split insert from vma, and needs
		 * us to insert it before dropping the locks
		 * (it may either follow vma or precede it).
		 */
		__insert_vm_struct(mm, insert);//將待插入的vma插入mm的紅黑樹,雙向鏈表以及
								       //匿名映射鏈表
	}

	if (anon_vma)
		spin_unlock(&anon_vma->lock);
	if (mapping)
		spin_unlock(&mapping->i_mmap_lock);

	if (remove_next) {
		if (file) {
			fput(file);
			if (next->vm_flags & VM_EXECUTABLE)
				removed_exe_file_vma(mm);
		}
		mm->map_count--;
		mpol_put(vma_policy(next));
		kmem_cache_free(vm_area_cachep, next);
		/*
		 * In mprotect's case 6 (see comments on vma_merge),
		 * we must remove another next too. It would clutter
		 * up the code too much to do both in one go.
		 */
		if (remove_next == 2) {//還有待刪除的區域
			next = vma->vm_next;
			goto again;
		}
	}

	validate_mm(mm);
}


 

insert_vm_struct()函數用於插入一塊新區域

 

int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
{
	struct vm_area_struct * __vma, * prev;
	struct rb_node ** rb_link, * rb_parent;

	/*
	 * The vm_pgoff of a purely anonymous vma should be irrelevant
	 * until its first write fault, when page's anon_vma and index
	 * are set.  But now set the vm_pgoff it will almost certainly
	 * end up with (unless mremap moves it elsewhere before that
	 * first wfault), so /proc/pid/maps tells a consistent story.
	 *
	 * By setting it to reflect the virtual start address of the
	 * vma, merges and splits can happen in a seamless way, just
	 * using the existing file pgoff checks and manipulations.
	 * Similarly in do_mmap_pgoff and in do_brk.
	 */
	if (!vma->vm_file) {
		BUG_ON(vma->anon_vma);
		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
	}
	/*__vma用來保存和vma->start對應的vma(與find_vma()一樣),同時獲取以下信息:
	  1.prev用來保存對應的前驅vma
	  2.rb_link保存該vma區域插入對應的紅黑樹節點
	  3.rb_parent保存該vma區域對應的父節點*/
	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
	if (__vma && __vma->vm_start < vma->vm_end)
		return -ENOMEM;
	if ((vma->vm_flags & VM_ACCOUNT) &&
	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
		return -ENOMEM;
	vma_link(mm, vma, prev, rb_link, rb_parent);//將vma關聯到所有的數據結構中
	return 0;
}


 

static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
			struct vm_area_struct *prev, struct rb_node **rb_link,
			struct rb_node *rb_parent)
{
	struct address_space *mapping = NULL;

	if (vma->vm_file)//如果存在文件映射則獲取文件對應的地址空間
		mapping = vma->vm_file->f_mapping;

	if (mapping) {
		spin_lock(&mapping->i_mmap_lock);
		vma->vm_truncate_count = mapping->truncate_count;
	}
	anon_vma_lock(vma);

	/*將vma插入到相應的數據結構中--雙向鏈表,紅黑樹和匿名映射鏈表*/
	__vma_link(mm, vma, prev, rb_link, rb_parent);
	__vma_link_file(vma);//將vma插入到文件地址空間的相應數據結構中

	anon_vma_unlock(vma);
	if (mapping)
		spin_unlock(&mapping->i_mmap_lock);

	mm->map_count++;
	validate_mm(mm);
}


在創建新的vma區域之前先要尋找一塊足夠大小的空閒區域,該項工作由get_unmapped_area()函數完成,而實際的工作將會由mm_struct中定義的輔助函數來完成。根據進程虛擬地址空間的佈局,會選擇使用不同的映射函數,在這裏考慮大多數系統上採用的標準函數arch_get_unmapped_area();

unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
		unsigned long len, unsigned long pgoff, unsigned long flags)
{
	struct mm_struct *mm = current->mm;
	struct vm_area_struct *vma;
	unsigned long start_addr;

	if (len > TASK_SIZE)
		return -ENOMEM;

	if (flags & MAP_FIXED)
		return addr;

	if (addr) {
		addr = PAGE_ALIGN(addr);//將地址按頁對齊
		vma = find_vma(mm, addr);//獲取一個vma,該vma可能包含了addr也可能在addr後面並且離addr最近
		/*這裏確定是否有一塊適合的空閒區域,先要保證addr+len不會
		  超過進程地址空間的最大允許範圍,然後如果前面vma獲取成功的話則要保證
		  vma位於addr的後面並且addr+len不會延伸到該vma的區域*/
		if (TASK_SIZE - len >= addr &&
		    (!vma || addr + len <= vma->vm_start))
			return addr;
	}
	/*前面獲取不成功的話則要調整起始地址了,根據情況選擇緩存的空閒區域地址
	  或者TASK_UNMAPPED_BASE=TASK_SIZE/3*/
	if (len > mm->cached_hole_size) {
	        start_addr = addr = mm->free_area_cache;
	} else {
	        start_addr = addr = TASK_UNMAPPED_BASE;
	        mm->cached_hole_size = 0;
	}

full_search:
	/*從addr開始遍歷用戶地址空間*/
	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
		/* At this point:  (!vma || addr < vma->vm_end). */
		if (TASK_SIZE - len < addr) {//這裏判斷是否已經遍歷到了用戶地址空間的末端
			/*
			 * Start a new search - just in case we missed
			 * some holes.
			 */
			 //如果上次不是從TAKS_UNMAPPED_BASE開始遍歷的,則嘗試從TASK_UNMAPPED_BASE開始遍歷
			if (start_addr != TASK_UNMAPPED_BASE) {
				addr = TASK_UNMAPPED_BASE;
			        start_addr = addr;
				mm->cached_hole_size = 0;
				goto full_search;
			}
			return -ENOMEM;
		}
		if (!vma || addr + len <= vma->vm_start) {//判斷是否有空閒區域
			/*
			 *找到空閒區域的話則記住我們搜索的結束處,以便下次搜索
			 */
			mm->free_area_cache = addr + len;
			return addr;
		}
		/*該空閒區域不符合大小要求,但是如果這個空閒區域大於之前保存的最大值的話
		  則將這個空閒區域保存,這樣便於前面確定從哪裏開始搜索*/
		if (addr + mm->cached_hole_size < vma->vm_start)
		        mm->cached_hole_size = vma->vm_start - addr;
		addr = vma->vm_end;
	}
}


 

 


 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章