【LWJGL2 WIKI】【現代OpenGL篇】用投影、視圖、模型矩陣畫方形

原文:http://wiki.lwjgl.org/wiki/The_Quad_with_Projection,_View_and_Model_matrices

Introduction 介紹

在OpenGL裏,位移、旋轉、縮放攝像機和模型用的矩陣必須我們自己計算。傳統的OpenGL裏有一堆幫忙計算矩陣的函數,但是OpenGL作爲一個圖形類庫職責是畫東西而不是算東西,所以現在這些工作最好是由我們自己來完成。本教程我們將用shader根據預先定義好的變換矩陣來計算每個頂點的位置。

So… what’s a matrix? 矩陣是什麼

如果你想問這個問題,那你最好先學學數學。本教程不解釋矩陣是什麼,只教你怎樣解決移動物體的問題。關於矩陣,你可以看看這個:[1]

3 Matrices 三個矩陣

爲了移動模型和操作攝像機,我們要根據計算過程分爲三個矩陣:

  • 投影矩陣(Projection matrix)
  • 視圖矩陣(View matrix)
  • 模型矩陣(Model matrix)

Projection matrix 投影矩陣

投影矩陣用來定義攝像機在3D世界中的可視區域,它也被稱爲截頭錐體,你可以想象成它是一個頂被削平的金字塔,而你將要站在頂部向底部看去。因此通常寬高和我們要繪製的矩陣(即視口,viewport)有相同的橫縱比。我們可以定義金字塔的深度,所有塔內的部分都會被畫在屏幕上,塔外部分則削掉以節省OpenGL性能開銷。金字塔底是塔頂的縮放版(仍然應有相同的橫縱比),縮放程度由我們的“視野”決定。
把投影矩陣想象成攝像機鏡頭的數學抽象,用此矩陣我們可以定義許多東西,比如最終圖象的橫縱比、放大係數、可視矩離。用圖表示大概是:
這裏寫圖片描述

還記得OpenGL默認的每個軸的座標範圍是[-1,1]嗎,使用投影矩陣可以改變這個範圍。比如,當我們使用16:10的寬屏分辨率時,我們的高度範圍仍然是[-1,1],但是寬度範圍擴充爲[-1.6,1.6]更合理。如果我們在矩陣裏沒用正確的橫縱比,最終圖片將看起來很變形。
矩陣應該是這樣的:
這裏寫圖片描述

代碼:

// Setup projection matrix
projectionMatrix = new Matrix4f();
float fieldOfView = 60f;
float aspectRatio = (float)WIDTH / (float)HEIGHT;
float near_plane = 0.1f;
float far_plane = 100f;

float y_scale = this.coTangent(this.degreesToRadians(fieldOfView / 2f));
float x_scale = y_scale / aspectRatio;
float frustum_length = far_plane - near_plane;

projectionMatrix.m00 = x_scale;
projectionMatrix.m11 = y_scale;
projectionMatrix.m22 = -((far_plane + near_plane) / frustum_length);
projectionMatrix.m23 = -1;
projectionMatrix.m32 = -((2 * near_plane * far_plane) / frustum_length);
projectionMatrix.m33 = 0;

兩個額外的函數cotangent和degressToRadians是簡單的幫助函數,cotangent其實就相當於1/Math.tan(角度),因爲視野角是角度格式,必須轉換爲弧度纔可用(Math.tan方法參數要求是弧度),把角度轉換爲弧度只需要乘以PI/180。

View matrix 視圖矩陣

投影矩陣是攝像機的鏡頭,視圖矩陣則是攝像機本身,我們可以隨意旋轉和移動攝像機,用視圖矩陣乘以投影矩陣纔會得到一個完整的攝像機的數學定義。

Model matrix 模型矩陣

對每個模型來說,最終的矩陣應該各不相同,這就是模型矩陣。就是說我們可以像旋轉、移動、縮放攝像機一樣同樣對待模型。

Manipulating matrices 操作矩陣

LWJGL提供了許多可以操作矩陣的靜態方法,本例中我們使用一個4x4的浮點數矩陣,應該用到類Matrix4f。使用此類可以實現旋轉、縮放和平移:

// Translate camera
Matrix4f.translate(cameraPos, viewMatrix, viewMatrix);

以上代碼中,我們按某一向量平移視圖矩陣(cameraPos是Vector3類型的變量),結果矩陣將覆蓋我們當前矩陣(譯註:因爲兩個參數裏傳的都viewMatrix,應該是一個是源矩陣,一個是結果矩陣),旋轉和縮放的用法也是類似。

Moving, rotating and scaling our object 平移、旋轉、縮放物體

操作矩陣需要Vector3對象,我們爲每種操作單獨定義一個Vector3變量:

private Vector3f modelPos = null;
private Vector3f modelAngle = null;
private Vector3f modelScale = null;

當定義方形時,我們也給這些向量一個標準初始值:

// Set the default quad rotation, scale and position values
modelPos = new Vector3f(0, 0, 0);
modelAngle = new Vector3f(0, 0, 0);
modelScale = new Vector3f(1, 1, 1);
cameraPos = new Vector3f(0, 0, -1);

在我們的程序循環邏輯部分,要創建完整的模型矩陣,這些變換必須按順序進行:縮放、平移、旋轉

// Scale, translate and rotate model
Matrix4f.scale(modelScale, modelMatrix, modelMatrix);
Matrix4f.translate(modelPos, modelMatrix, modelMatrix);
Matrix4f.rotate(this.degreesToRadians(modelAngle.z), new Vector3f(0, 0, 1),
        modelMatrix, modelMatrix);
Matrix4f.rotate(this.degreesToRadians(modelAngle.y), new Vector3f(0, 1, 0),
        modelMatrix, modelMatrix);
Matrix4f.rotate(this.degreesToRadians(modelAngle.x), new Vector3f(1, 0, 0),
        modelMatrix, modelMatrix);

Uniform shader variables shader中的uniform變量

你得根據三個矩陣計算每個頂點的正確位置,因此我們的shader必須事先就得到這些信息,用uniform變量來實現。uniform變量是一種會在渲染管線裏保持不變的變量,這正是我們所需要的,渲染前我們得上傳新的矩陣數據。按下面這樣定義uniform變量:

#version 150 core

uniform mat4 projectionMatrix;
uniform mat4 viewMatrix;
uniform mat4 modelMatrix;

in vec4 in_Position;

在main方法裏,我們要算新的頂點座標,in_Position是原來的頂點座標:

gl_Position = projectionMatrix * viewMatrix * modelMatrix * in_Position;

片段shader不需要知道發生了什麼。in變量與屬性列表相連,uniform變量並不需要。我們把數據放進這些變量中,因此我們需要知道這些變量存在於我們shader(內存)的何處。可以這樣獲取:

// Get matrices uniform locations
projectionMatrixLocation = GL20.glGetUniformLocation(pId, "projectionMatrix");
viewMatrixLocation = GL20.glGetUniformLocation(pId, "viewMatrix");
modelMatrixLocation = GL20.glGetUniformLocation(pId, "modelMatrix");

得到的這些location是整數,一旦shader創建好,它們將不變。所以它們是全局的,當我們上傳數據時正需要它們。

Uploading data to uniform variables 上傳數據到uniform變量

我們已經有了投影、視圖、模型矩陣,最後只需要把它們上傳到uniform變量中去,在此之前有些事要做:

  • 儲存Matrix4f數據在一個FloatBuffer中,此FloatBuffer必須保存16個值。
  • Flip這個FloatBuffer
  • 把FloatBuffer發送到uniform location

保存矩陣很容易,定義一個全局FloatBuffer保存16個值,我們的矩陣有一個叫store的函數,接收一個FloatBuffer然後把矩陣信息存在其中。Flip一個FloatBuffer之前也常做,應該駕輕就熟了。uniform location就是之前提到的當創建shader時就有的數據值。我們可以用glUniformMatrix4上傳FloatBuffer,保存、flip、上傳三個矩陣,別忘了還要綁定shader:

// Upload matrices to the uniform variables
GL20.glUseProgram(pId);

projectionMatrix.store(matrix44Buffer); matrix44Buffer.flip();
GL20.glUniformMatrix4(projectionMatrixLocation, false, matrix44Buffer);
viewMatrix.store(matrix44Buffer); matrix44Buffer.flip();
GL20.glUniformMatrix4(viewMatrixLocation, false, matrix44Buffer);
modelMatrix.store(matrix44Buffer); matrix44Buffer.flip();
GL20.glUniformMatrix4(modelMatrixLocation, false, matrix44Buffer);

GL20.glUseProgram(0);

The result 結果

這裏寫圖片描述
現在即使視口不是正方形,方形仍然被無拉伸地正確渲染。這是理所當然的,因爲我們用了投影矩陣,它調整數值以適應我們使用的橫縱比。

Complete source code 完整代碼

Vertex shader

#version 150 core

uniform mat4 projectionMatrix;
uniform mat4 viewMatrix;
uniform mat4 modelMatrix;

in vec4 in_Position;
in vec4 in_Color;
in vec2 in_TextureCoord;

out vec4 pass_Color;
out vec2 pass_TextureCoord;

void main(void) {
    gl_Position = in_Position;
    // Override gl_Position with our new calculated position
    gl_Position = projectionMatrix * viewMatrix * modelMatrix * in_Position;

    pass_Color = in_Color;
    pass_TextureCoord = in_TextureCoord;
}

Fragment shader

#version 150 core

uniform sampler2D texture_diffuse;

in vec4 pass_Color;
in vec2 pass_TextureCoord;

out vec4 out_Color;

void main(void) {
    out_Color = pass_Color;
    // Override out_Color with our texture pixel
    out_Color = texture2D(texture_diffuse, pass_TextureCoord);
}

VertexData class

public class VertexData {
    // Vertex data
    private float[] xyzw = new float[] {0f, 0f, 0f, 1f};
    private float[] rgba = new float[] {1f, 1f, 1f, 1f};
    private float[] st = new float[] {0f, 0f};

    // The amount of bytes an element has
    public static final int elementBytes = 4;

    // Elements per parameter
    public static final int positionElementCount = 4;
    public static final int colorElementCount = 4;
    public static final int textureElementCount = 2;

    // Bytes per parameter
    public static final int positionBytesCount = positionElementCount * elementBytes;
    public static final int colorByteCount = colorElementCount * elementBytes;
    public static final int textureByteCount = textureElementCount * elementBytes;

    // Byte offsets per parameter
    public static final int positionByteOffset = 0;
    public static final int colorByteOffset = positionByteOffset + positionBytesCount;
    public static final int textureByteOffset = colorByteOffset + colorByteCount;

    // The amount of elements that a vertex has
    public static final int elementCount = positionElementCount +
            colorElementCount + textureElementCount;   
    // The size of a vertex in bytes, like in C/C++: sizeof(Vertex)
    public static final int stride = positionBytesCount + colorByteCount +
            textureByteCount;

    // Setters
    public void setXYZ(float x, float y, float z) {
        this.setXYZW(x, y, z, 1f);
    }

    public void setRGB(float r, float g, float b) {
        this.setRGBA(r, g, b, 1f);
    }

    public void setST(float s, float t) {
        this.st = new float[] {s, t};
    }

    public void setXYZW(float x, float y, float z, float w) {
        this.xyzw = new float[] {x, y, z, w};
    }

    public void setRGBA(float r, float g, float b, float a) {
        this.rgba = new float[] {r, g, b, 1f};
    }

    // Getters 
    public float[] getElements() {
        float[] out = new float[VertexData.elementCount];
        int i = 0;

        // Insert XYZW elements
        out[i++] = this.xyzw[0];
        out[i++] = this.xyzw[1];
        out[i++] = this.xyzw[2];
        out[i++] = this.xyzw[3];
        // Insert RGBA elements
        out[i++] = this.rgba[0];
        out[i++] = this.rgba[1];
        out[i++] = this.rgba[2];
        out[i++] = this.rgba[3];
        // Insert ST elements
        out[i++] = this.st[0];
        out[i++] = this.st[1];

        return out;
    }

    public float[] getXYZW() {
        return new float[] {this.xyzw[0], this.xyzw[1], this.xyzw[2], this.xyzw[3]};
    }

    public float[] getXYZ() {
        return new float[] {this.xyzw[0], this.xyzw[1], this.xyzw[2]};
    }

    public float[] getRGBA() {
        return new float[] {this.rgba[0], this.rgba[1], this.rgba[2], this.rgba[3]};
    }

    public float[] getRGB() {
        return new float[] {this.rgba[0], this.rgba[1], this.rgba[2]};
    }

    public float[] getST() {
        return new float[] {this.st[0], this.st[1]};
    }
}

Application

import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStream;
import java.nio.ByteBuffer;
import java.nio.FloatBuffer;

import org.lwjgl.BufferUtils;
import org.lwjgl.LWJGLException;
import org.lwjgl.input.Keyboard;
import org.lwjgl.opengl.ContextAttribs;
import org.lwjgl.opengl.Display;
import org.lwjgl.opengl.DisplayMode;
import org.lwjgl.opengl.GL11;
import org.lwjgl.opengl.GL13;
import org.lwjgl.opengl.GL15;
import org.lwjgl.opengl.GL20;
import org.lwjgl.opengl.GL30;
import org.lwjgl.opengl.PixelFormat;
import org.lwjgl.util.glu.GLU;
import org.lwjgl.util.vector.Matrix4f;
import org.lwjgl.util.vector.Vector3f;

import de.matthiasmann.twl.utils.PNGDecoder;
import de.matthiasmann.twl.utils.PNGDecoder.Format;

public class TheQuadExampleMoving {
    // Entry point for the application
    public static void main(String[] args) {
        new TheQuadExampleMoving();
    }

    // Setup variables
    private final String WINDOW_TITLE = "The Quad: Moving";
    private final int WIDTH = 320;
    private final int HEIGHT = 200;
    private final double PI = 3.14159265358979323846;
    // Quad variables
    private int vaoId = 0;
    private int vboId = 0;
    private int vboiId = 0;
    private int indicesCount = 0;
    private VertexData[] vertices = null;
    private ByteBuffer verticesByteBuffer = null;
    // Shader variables
    private int pId = 0;
    // Texture variables
    private int[] texIds = new int[] {0, 0};
    private int textureSelector = 0;
    // Moving variables
    private int projectionMatrixLocation = 0;
    private int viewMatrixLocation = 0;
    private int modelMatrixLocation = 0;
    private Matrix4f projectionMatrix = null;
    private Matrix4f viewMatrix = null;
    private Matrix4f modelMatrix = null;
    private Vector3f modelPos = null;
    private Vector3f modelAngle = null;
    private Vector3f modelScale = null;
    private Vector3f cameraPos = null;
    private FloatBuffer matrix44Buffer = null;

    public TheQuadExampleMoving() {
        // Initialize OpenGL (Display)
        this.setupOpenGL();

        this.setupQuad();
        this.setupShaders();
        this.setupTextures();
        this.setupMatrices();

        while (!Display.isCloseRequested()) {
            // Do a single loop (logic/render)
            this.loopCycle();

            // Force a maximum FPS of about 60
            Display.sync(60);
            // Let the CPU synchronize with the GPU if GPU is tagging behind
            Display.update();
        }

        // Destroy OpenGL (Display)
        this.destroyOpenGL();
    }

    private void setupMatrices() {
        // Setup projection matrix
        projectionMatrix = new Matrix4f();
        float fieldOfView = 60f;
        float aspectRatio = (float)WIDTH / (float)HEIGHT;
        float near_plane = 0.1f;
        float far_plane = 100f;

        float y_scale = this.coTangent(this.degreesToRadians(fieldOfView / 2f));
        float x_scale = y_scale / aspectRatio;
        float frustum_length = far_plane - near_plane;

        projectionMatrix.m00 = x_scale;
        projectionMatrix.m11 = y_scale;
        projectionMatrix.m22 = -((far_plane + near_plane) / frustum_length);
        projectionMatrix.m23 = -1;
        projectionMatrix.m32 = -((2 * near_plane * far_plane) / frustum_length);
                projectionMatrix.m33 = 0;

        // Setup view matrix
        viewMatrix = new Matrix4f();

        // Setup model matrix
        modelMatrix = new Matrix4f();

        // Create a FloatBuffer with the proper size to store our matrices later
        matrix44Buffer = BufferUtils.createFloatBuffer(16);
    }

    private void setupTextures() {
        texIds[0] = this.loadPNGTexture("assets/images/stGrid1.png", GL13.GL_TEXTURE0);
        texIds[1] = this.loadPNGTexture("assets/images/stGrid2.png", GL13.GL_TEXTURE0);

        this.exitOnGLError("setupTexture");
    }

    private void setupOpenGL() {
        // Setup an OpenGL context with API version 3.2
        try {
            PixelFormat pixelFormat = new PixelFormat();
            ContextAttribs contextAtrributes = new ContextAttribs(3, 2)
                .withForwardCompatible(true)
                .withProfileCore(true);

            Display.setDisplayMode(new DisplayMode(WIDTH, HEIGHT));
            Display.setTitle(WINDOW_TITLE);
            Display.create(pixelFormat, contextAtrributes);

            GL11.glViewport(0, 0, WIDTH, HEIGHT);
        } catch (LWJGLException e) {
            e.printStackTrace();
            System.exit(-1);
        }

        // Setup an XNA like background color
        GL11.glClearColor(0.4f, 0.6f, 0.9f, 0f);

        // Map the internal OpenGL coordinate system to the entire screen
        GL11.glViewport(0, 0, WIDTH, HEIGHT);

        this.exitOnGLError("setupOpenGL");
    }

    private void setupQuad() {
        // We'll define our quad using 4 vertices of the custom 'TexturedVertex' class
        VertexData v0 = new VertexData();
        v0.setXYZ(-0.5f, 0.5f, 0); v0.setRGB(1, 0, 0); v0.setST(0, 0);
        VertexData v1 = new VertexData();
        v1.setXYZ(-0.5f, -0.5f, 0); v1.setRGB(0, 1, 0); v1.setST(0, 1);
        VertexData v2 = new VertexData();
        v2.setXYZ(0.5f, -0.5f, 0); v2.setRGB(0, 0, 1); v2.setST(1, 1);
        VertexData v3 = new VertexData();
        v3.setXYZ(0.5f, 0.5f, 0); v3.setRGB(1, 1, 1); v3.setST(1, 0);

        vertices = new VertexData[] {v0, v1, v2, v3};

        // Put each 'Vertex' in one FloatBuffer
        verticesByteBuffer = BufferUtils.createByteBuffer(vertices.length *
                VertexData.stride);            
        FloatBuffer verticesFloatBuffer = verticesByteBuffer.asFloatBuffer();
        for (int i = 0; i < vertices.length; i++) {
            // Add position, color and texture floats to the buffer
            verticesFloatBuffer.put(vertices[i].getElements());
        }
        verticesFloatBuffer.flip();


        // OpenGL expects to draw vertices in counter clockwise order by default
        byte[] indices = {
                0, 1, 2,
                2, 3, 0
        };
        indicesCount = indices.length;
        ByteBuffer indicesBuffer = BufferUtils.createByteBuffer(indicesCount);
        indicesBuffer.put(indices);
        indicesBuffer.flip();

        // Create a new Vertex Array Object in memory and select it (bind)
        vaoId = GL30.glGenVertexArrays();
        GL30.glBindVertexArray(vaoId);

        // Create a new Vertex Buffer Object in memory and select it (bind)
        vboId = GL15.glGenBuffers();
        GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, vboId);
        GL15.glBufferData(GL15.GL_ARRAY_BUFFER, verticesFloatBuffer, GL15.GL_STREAM_DRAW);

        // Put the position coordinates in attribute list 0
        GL20.glVertexAttribPointer(0, VertexData.positionElementCount, GL11.GL_FLOAT,
                false, VertexData.stride, VertexData.positionByteOffset);
        // Put the color components in attribute list 1
        GL20.glVertexAttribPointer(1, VertexData.colorElementCount, GL11.GL_FLOAT,
                false, VertexData.stride, VertexData.colorByteOffset);
        // Put the texture coordinates in attribute list 2
        GL20.glVertexAttribPointer(2, VertexData.textureElementCount, GL11.GL_FLOAT,
                false, VertexData.stride, VertexData.textureByteOffset);

        GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, 0);

        // Deselect (bind to 0) the VAO
        GL30.glBindVertexArray(0);

        // Create a new VBO for the indices and select it (bind) - INDICES
        vboiId = GL15.glGenBuffers();
        GL15.glBindBuffer(GL15.GL_ELEMENT_ARRAY_BUFFER, vboiId);
        GL15.glBufferData(GL15.GL_ELEMENT_ARRAY_BUFFER, indicesBuffer,
                GL15.GL_STATIC_DRAW);
        GL15.glBindBuffer(GL15.GL_ELEMENT_ARRAY_BUFFER, 0);

        // Set the default quad rotation, scale and position values
        modelPos = new Vector3f(0, 0, 0);
        modelAngle = new Vector3f(0, 0, 0);
        modelScale = new Vector3f(1, 1, 1);
        cameraPos = new Vector3f(0, 0, -1);

        this.exitOnGLError("setupQuad");
    }

    private void setupShaders() {      
        // Load the vertex shader
        int vsId = this.loadShader("assets/shaders/moving/vertex.glsl", GL20.GL_VERTEX_SHADER);
        // Load the fragment shader
        int fsId = this.loadShader("assets/shaders/moving/fragment.glsl", GL20.GL_FRAGMENT_SHADER);

        // Create a new shader program that links both shaders
        pId = GL20.glCreateProgram();
        GL20.glAttachShader(pId, vsId);
        GL20.glAttachShader(pId, fsId);

        // Position information will be attribute 0
        GL20.glBindAttribLocation(pId, 0, "in_Position");
        // Color information will be attribute 1
        GL20.glBindAttribLocation(pId, 1, "in_Color");
        // Textute information will be attribute 2
        GL20.glBindAttribLocation(pId, 2, "in_TextureCoord");

        GL20.glLinkProgram(pId);
        GL20.glValidateProgram(pId);

        // Get matrices uniform locations
        projectionMatrixLocation = GL20.glGetUniformLocation(pId,"projectionMatrix");
        viewMatrixLocation = GL20.glGetUniformLocation(pId, "viewMatrix");
        modelMatrixLocation = GL20.glGetUniformLocation(pId, "modelMatrix");

        this.exitOnGLError("setupShaders");
    }

    private void logicCycle() {
        //-- Input processing
        float rotationDelta = 15f;
        float scaleDelta = 0.1f;
        float posDelta = 0.1f;
        Vector3f scaleAddResolution = new Vector3f(scaleDelta, scaleDelta, scaleDelta);
        Vector3f scaleMinusResolution = new Vector3f(-scaleDelta, -scaleDelta,
                -scaleDelta);

        while(Keyboard.next()) {           
            // Only listen to events where the key was pressed (down event)
            if (!Keyboard.getEventKeyState()) continue;

            // Switch textures depending on the key released
            switch (Keyboard.getEventKey()) {
            case Keyboard.KEY_1:
                textureSelector = 0;
                break;
            case Keyboard.KEY_2:
                textureSelector = 1;
                break;
            }

            // Change model scale, rotation and translation values
            switch (Keyboard.getEventKey()) {
            // Move
            case Keyboard.KEY_UP:
                modelPos.y += posDelta;
                break;
            case Keyboard.KEY_DOWN:
                modelPos.y -= posDelta;
                break;
            // Scale
            case Keyboard.KEY_P:
                Vector3f.add(modelScale, scaleAddResolution, modelScale);
                break;
            case Keyboard.KEY_M:
                Vector3f.add(modelScale, scaleMinusResolution, modelScale);
                break;
            // Rotation
            case Keyboard.KEY_LEFT:
                modelAngle.z += rotationDelta;
                break;
            case Keyboard.KEY_RIGHT:
                modelAngle.z -= rotationDelta;
                break;
            }
        }

        //-- Update matrices
        // Reset view and model matrices
        viewMatrix = new Matrix4f();
        modelMatrix = new Matrix4f();

        // Translate camera
        Matrix4f.translate(cameraPos, viewMatrix, viewMatrix);

        // Scale, translate and rotate model
        Matrix4f.scale(modelScale, modelMatrix, modelMatrix);
        Matrix4f.translate(modelPos, modelMatrix, modelMatrix);
        Matrix4f.rotate(this.degreesToRadians(modelAngle.z), new Vector3f(0, 0, 1),
                modelMatrix, modelMatrix);
        Matrix4f.rotate(this.degreesToRadians(modelAngle.y), new Vector3f(0, 1, 0),
                modelMatrix, modelMatrix);
        Matrix4f.rotate(this.degreesToRadians(modelAngle.x), new Vector3f(1, 0, 0),
                modelMatrix, modelMatrix);

        // Upload matrices to the uniform variables
        GL20.glUseProgram(pId);

        projectionMatrix.store(matrix44Buffer); matrix44Buffer.flip();
        GL20.glUniformMatrix4(projectionMatrixLocation, false, matrix44Buffer);
        viewMatrix.store(matrix44Buffer); matrix44Buffer.flip();
        GL20.glUniformMatrix4(viewMatrixLocation, false, matrix44Buffer);
        modelMatrix.store(matrix44Buffer); matrix44Buffer.flip();
        GL20.glUniformMatrix4(modelMatrixLocation, false, matrix44Buffer);

        GL20.glUseProgram(0);

        this.exitOnGLError("logicCycle");
    }

    private void renderCycle() {
        GL11.glClear(GL11.GL_COLOR_BUFFER_BIT);

        GL20.glUseProgram(pId);

        // Bind the texture
        GL13.glActiveTexture(GL13.GL_TEXTURE0);
        GL11.glBindTexture(GL11.GL_TEXTURE_2D, texIds[textureSelector]);

        // Bind to the VAO that has all the information about the vertices
        GL30.glBindVertexArray(vaoId);
        GL20.glEnableVertexAttribArray(0);
        GL20.glEnableVertexAttribArray(1);
        GL20.glEnableVertexAttribArray(2);

        // Bind to the index VBO that has all the information about the order of the vertices
        GL15.glBindBuffer(GL15.GL_ELEMENT_ARRAY_BUFFER, vboiId);

        // Draw the vertices
        GL11.glDrawElements(GL11.GL_TRIANGLES, indicesCount, GL11.GL_UNSIGNED_BYTE, 0);

        // Put everything back to default (deselect)
        GL15.glBindBuffer(GL15.GL_ELEMENT_ARRAY_BUFFER, 0);
        GL20.glDisableVertexAttribArray(0);
        GL20.glDisableVertexAttribArray(1);
        GL20.glDisableVertexAttribArray(2);
        GL30.glBindVertexArray(0);

        GL20.glUseProgram(0);

        this.exitOnGLError("renderCycle");
    }

    private void loopCycle() {
        // Update logic
        this.logicCycle();
        // Update rendered frame
        this.renderCycle();

        this.exitOnGLError("loopCycle");
    }

    private void destroyOpenGL() { 
        // Delete the texture
        GL11.glDeleteTextures(texIds[0]);
        GL11.glDeleteTextures(texIds[1]);

        // Delete the shaders
        GL20.glUseProgram(0);
        GL20.glDeleteProgram(pId);

        // Select the VAO
        GL30.glBindVertexArray(vaoId);

        // Disable the VBO index from the VAO attributes list
        GL20.glDisableVertexAttribArray(0);
        GL20.glDisableVertexAttribArray(1);

        // Delete the vertex VBO
        GL15.glBindBuffer(GL15.GL_ARRAY_BUFFER, 0);
        GL15.glDeleteBuffers(vboId);

        // Delete the index VBO
        GL15.glBindBuffer(GL15.GL_ELEMENT_ARRAY_BUFFER, 0);
        GL15.glDeleteBuffers(vboiId);

        // Delete the VAO
        GL30.glBindVertexArray(0);
        GL30.glDeleteVertexArrays(vaoId);

        this.exitOnGLError("destroyOpenGL");

        Display.destroy();
    }

    private int loadShader(String filename, int type) {
        StringBuilder shaderSource = new StringBuilder();
        int shaderID = 0;

        try {
            BufferedReader reader = new BufferedReader(new FileReader(filename));
            String line;
            while ((line = reader.readLine()) != null) {
                shaderSource.append(line).append("\n");
            }
            reader.close();
        } catch (IOException e) {
            System.err.println("Could not read file.");
            e.printStackTrace();
            System.exit(-1);
        }

        shaderID = GL20.glCreateShader(type);
        GL20.glShaderSource(shaderID, shaderSource);
        GL20.glCompileShader(shaderID);

        if (GL20.glGetShader(shaderID, GL20.GL_COMPILE_STATUS) == GL11.GL_FALSE) {
            System.err.println("Could not compile shader.");
            System.exit(-1);
        }

        this.exitOnGLError("loadShader");

        return shaderID;
    }

    private int loadPNGTexture(String filename, int textureUnit) {
        ByteBuffer buf = null;
        int tWidth = 0;
        int tHeight = 0;

        try {
            // Open the PNG file as an InputStream
            InputStream in = new FileInputStream(filename);
            // Link the PNG decoder to this stream
            PNGDecoder decoder = new PNGDecoder(in);

            // Get the width and height of the texture
            tWidth = decoder.getWidth();
            tHeight = decoder.getHeight();


            // Decode the PNG file in a ByteBuffer
            buf = ByteBuffer.allocateDirect(
                    4 * decoder.getWidth() * decoder.getHeight());
            decoder.decode(buf, decoder.getWidth() * 4, Format.RGBA);
            buf.flip();

            in.close();
        } catch (IOException e) {
            e.printStackTrace();
            System.exit(-1);
        }

        // Create a new texture object in memory and bind it
        int texId = GL11.glGenTextures();
        GL13.glActiveTexture(textureUnit);
        GL11.glBindTexture(GL11.GL_TEXTURE_2D, texId);

        // All RGB bytes are aligned to each other and each component is 1 byte
        GL11.glPixelStorei(GL11.GL_UNPACK_ALIGNMENT, 1);

        // Upload the texture data and generate mip maps (for scaling)
        GL11.glTexImage2D(GL11.GL_TEXTURE_2D, 0, GL11.GL_RGB, tWidth, tHeight, 0,
                GL11.GL_RGBA, GL11.GL_UNSIGNED_BYTE, buf);
        GL30.glGenerateMipmap(GL11.GL_TEXTURE_2D);

        // Setup the ST coordinate system
        GL11.glTexParameteri(GL11.GL_TEXTURE_2D, GL11.GL_TEXTURE_WRAP_S, GL11.GL_REPEAT);
        GL11.glTexParameteri(GL11.GL_TEXTURE_2D, GL11.GL_TEXTURE_WRAP_T, GL11.GL_REPEAT);

        // Setup what to do when the texture has to be scaled
        GL11.glTexParameteri(GL11.GL_TEXTURE_2D, GL11.GL_TEXTURE_MAG_FILTER,
                GL11.GL_LINEAR);
        GL11.glTexParameteri(GL11.GL_TEXTURE_2D, GL11.GL_TEXTURE_MIN_FILTER,
                GL11.GL_LINEAR_MIPMAP_LINEAR);

        this.exitOnGLError("loadPNGTexture");

        return texId;
    }

    private float coTangent(float angle) {
        return (float)(1f / Math.tan(angle));
    }

    private float degreesToRadians(float degrees) {
        return degrees * (float)(PI / 180d);
    }

    private void exitOnGLError(String errorMessage) {
        int errorValue = GL11.glGetError();

        if (errorValue != GL11.GL_NO_ERROR) {
            String errorString = GLU.gluErrorString(errorValue);
            System.err.println("ERROR - " + errorMessage + ": " + errorString);

            if (Display.isCreated()) Display.destroy();
            System.exit(-1);
        }
    }
}

Credit

Mathias Verboven (moci)

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章