堆,棧,內存泄露,內存溢出介紹

轉自:http://space.itpub.net/8797129/viewspace-693648

簡單的可以理解爲:
heap(堆):是由malloc之類函數分配的空間所在地。地址是由低向高增長的。
stack(棧):是自動分配變量,以及函數調用的時候所使用的一些空間。地址是由高向低減少的。


一、預備知識—程序的內存分配

一個由c/C++編譯的程序佔用的內存分爲以下幾個部分
1、棧區(stack)— 由編譯器自動分配釋放 ,存放函數的參數值,局部變量的值等。其操作方式類似於數據結構中的棧。
2、堆區(heap) — 一般由程序員分配釋放, 若程序員不釋放,程序結束時可能由OS 。注意它與數據結構中的堆是兩回事,分配方式倒是類似於鏈表,呵呵。
3、全局區(靜態區)(static)—,全局變量和靜態變量的存儲是放在一塊的,初始化的全局變量和靜態變量在一塊區域,未初始化的全局變量和未初始化的靜態變量在相鄰的另一塊區域。 - 程序結束後有系統釋放
4、文字常量區 —常量字符串就是放在這裏的。 程序結束後由系統釋放
5、程序代碼區—存放函數體的二進制代碼。

二、例子程序
這是一個前輩寫的,非常詳細
//main.cpp
int a = 0; 全局初始化區
char *p1; 全局未初始化區
main()
{
int b; 棧
char s[] = "abc"; 棧
char *p2; 棧
char *p3 = "123456"; 123456在常量區,p3在棧上。
static int c =0; 全局(靜態)初始化區
p1 = (char *)malloc(10);
p2 = (char *)malloc(20);
分配得來得10和20字節的區域就在堆區
strcpy(p1, "123456"); 123456放在常量區,編譯器可能會將它與p3所指向的"123456"優化成一個地方。
}


二、堆和棧的理論知識
2.1申請方式
stack:
由系統自動分配。 例如,聲明在函數中一個局部變量 int b; 系統自動在棧中爲b開闢空間
heap:
需要程序員自己申請,並指明大小,在c中malloc函數
如p1 = (char *)malloc(10);
在C++中用new運算符
如p2 = (char *)malloc(10);
但是注意p1、p2本身是在棧中的。
2.2申請後系統的響應
:只要棧的剩餘空間大於所申請空間,系統將爲程序提供內存,否則將報異常提示棧溢出
:首先應該知道操作系統有一個記錄空閒內存地址的鏈表,當系統收到程序的申請時,會遍歷該鏈表,尋找第一個空間大於所申請空間的堆結點,然後將該結點從空閒結點鏈表中刪除,並將該結點的空間分配給程序,另外,對於大多數系統,會在這塊內存空間中的首地址處記錄本次分配的大小,這樣,代碼中的delete語句才能正確的釋放本內存空間。另外,由於找到的堆結點的大小不一定正好等於申請的大小,系統會自動的將多餘的那部分重新放入空閒鏈表中。
2.3申請大小的限制
:在Windows下,棧是向低地址擴展的數據結構,是一塊連續的內存的區域。這句話的意思是棧頂的地址和棧的最大容量是系統預先規定好的,在 WINDOWS下,棧的大小是2M(也有的說是1M,總之是一個編譯時就確定的常數),如果申請的空間超過棧的剩餘空間時,將提示overflow。因此,能從棧獲得的空間較小。
:堆是向高地址擴展的數據結構,是不連續的內存區域。這是由於系統是用鏈表來存儲的空閒內存地址的,自然是不連續的,而鏈表的遍歷方向是由低地址向高地址。堆的大小受限於計算機系統中有效的虛擬內存。由此可見,堆獲得的空間比較靈活,也比較大。
2.4申請效率的比較:
棧由系統自動分配,速度較快。但程序員是無法控制的。
堆是由new分配的內存,一般速度比較慢,而且容易產生內存碎片,不過用起來最方便.另外,在WINDOWS下,最好的方式是用VirtualAlloc分配內存,他不是在堆,也不是在棧是直接在進程的地址空間中保留一快內存,雖然用起來最不方便。但是速度,也最靈活
2.5堆和棧中的存儲內容
棧:在函數調用時,第一個進棧的是主函數中後的下一條指令(函數調用語句的下一條可執行語句)的地址,然後是函數的各個參數,在大多數的C編譯器中,參數是由右往左入棧的,然後是函數中的局部變量。注意靜態變量是不入棧的。
當本次函數調用結束後,局部變量先出棧,然後是參數,最後棧頂指針指向最開始存的地址,也就是主函數中的下一條指令,程序由該點繼續運行。
堆:一般是在堆的頭部用一個字節存放堆的大小。堆中的具體內容有程序員安排。
2.6存取效率的比較

char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在運行時刻賦值的;
而bbbbbbbbbbb是在編譯時就確定的;
但是,在以後的存取中,在棧上的數組比指針所指向的字符串(例如堆)快。
比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
對應的彙編代碼
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一種在讀取時直接就把字符串中的元素讀到寄存器cl中,而第二種則要先把指edx中,在根據edx讀取字符,顯然慢了。
2.7小結:
堆和棧的區別可以用如下的比喻來看出:
使用棧就象我們去飯館裏吃飯,只管點菜(發出申請)、付錢、和吃(使用),吃飽了就走,不必理會切菜、洗菜等準備工作和洗碗、刷鍋等掃尾工作,他的好處是快捷,但是自由度小。
使用堆就象是自己動手做喜歡吃的菜餚,比較麻煩,但是比較符合自己的口味,而且自由度大。

堆和棧的區別主要分別:
操作系統方面的堆和棧,如上面說的那些,不多說了。
還有就是數據結構方面的堆和棧,這些都是不同的概念。這裏的堆實際上指的就是(滿足堆性質的)優先隊列的一種數據結構,第1個元素有最高的優先權;棧實際上就是滿足先進後出的性質的數學或數據結構。
雖然堆棧,堆棧的說法是連起來叫,但是他們還是有很大區別的,連着叫只是由於歷史的原因針值讀


在計算機科學中,內存泄漏(memory leak)指由於疏忽或錯誤造成程序未能釋放已經不再使用的內存的情況。內存泄漏並非指內存在物理上的消失,而是應用程序分配某段內存後,由於設計錯誤,失去了對該段內存的控制,因而造成了內存的浪費。內存泄漏與許多其他問題有着相似的症狀,並且通常情況下只能由那些可以獲得程序源代碼的程序員纔可以分析出來。然而,有不少人習慣於把任何不需要的內存使用的增加描述爲內存泄漏,嚴格意義上來說這是不準確的。

  一般我們常說的內存泄漏是指堆內存的泄漏。堆內存是指程序從堆中分配的,大小任意的(內存塊的大小可以在程序運行期決定),使用完後必須顯式釋放的內存。應用程序一般使用malloc,calloc,realloc,new等函數從堆中分配到一塊內存,使用完後,程序必須負責相應的調用free或delete釋放該內存塊,否則,這塊內存就不能被再次使用,我們就說這塊內存泄漏了。

內存溢出就是你要求分配的內存超出了系統能給你的,系統不能滿足需求,於是產生溢出。

比方說棧,棧滿時再做進棧必定產生空間溢出,叫上溢,棧空時再做退棧也產生空間溢出,稱爲下溢。

這是程序語言中的一個概念,典型的,在C語言中,在分配數組時爲其分配的長度是1024,但往其中裝入超過1024個數據時,由於C語言不會對數組操作進行越界檢查,就會造成內存溢出錯誤


在程序員設計的代碼中包含的“內存溢出”漏洞實在太多了。
導致內存溢出問題的原因有很多,比如:
(1) 使用非類型安全(non-type-safe)的語言如 C/C++ 等。
(2) 以不可靠的方式存取或者複製內存緩衝區。
(3) 編譯器設置的內存緩衝區太靠近關鍵數據結構。
下面來分析這些因素:
1. 內存溢出問題是 C 語言或者 C++ 語言所固有的缺陷,它們既不檢查數組邊界,又不檢查類型可靠性(type-safety)。衆所周知,用 C/C++ 語言開發的程序由於目標代碼非常接近機器內核,因而能夠直接訪問內存和寄存器,這種特性大大提升了 C/C++ 語言代碼的性能。只要合理編碼,C/C++ 應用程序在執行效率上必然優於其它高級語言。然而,C/C++ 語言導致內存溢出問題的可能性也要大許多。其他語言也存在內容溢出問題,但它往往不是程序員的失誤,而是應用程序的運行時環境出錯所致。
2. 當應用程序讀取用戶(也可能是惡意***者)數據,試圖複製到應用程序開闢的內存緩衝區中,卻無法保證緩衝區的空間足夠時(換言之,假設代碼申請了 N 字節大小的內存緩衝區,隨後又向其中複製超過 N 字節的數據)。內存緩衝區就可能會溢出。想一想,如果你向 12 盎司的玻璃杯中倒入 16 盎司水,那麼多出來的 4 盎司水怎麼辦?當然會滿到玻璃杯外面了!
3. 最重要的是,C/C++ 編譯器開闢的內存緩衝區常常鄰近重要的數據結構。現在假設某個函數的堆棧緊接在在內存緩衝區後面時,其中保存的函數返回地址就會與內存緩衝區相鄰。此時,惡意***者就可以向內存緩衝區複製大量數據,從而使得內存緩衝區溢出並覆蓋原先保存於堆棧中的函數返回地址。這樣,函數的返回地址就被***者換成了他指定的數值;一旦函數調用完畢,就會繼續執行“函數返回地址”處的代碼。非但如此,C++ 的某些其它數據結構,比如 v-table 、例外事件處理程序、函數指針等,也可能受到類似的***。

 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章