線性表的單鏈表實現(c++)

前言:

前面學習了線性表的順序數組實現,那便想到線性表肯定還有鏈表實現,今天就來看看線性表的單鏈表實現。

線性表的單鏈表實現:

模板基類:

template<class elemType>
class list
{
public:
    virtual void clear() = 0;            //clear all elements in list
    virtual int length()const = 0;       //get the length of list
    virtual void insert(int i, const elemType &x) = 0;  //insert an element in list
    virtual void remove(int i) = 0;       //remove an list in list
    virtual int search(const elemType &x)const = 0;     //search the element
    virtual elemType visit(int i)const = 0;             //visit the element
    virtual void traverse()const = 0;    //visit every element in list
    virtual ~list(){};
};

子類線性表的單鏈表實現:

template<class elemType>
class sLinkList:public list<elemType>{
private:
    struct node{
        elemType data;
        node *next;
        node(const elemType &x, node *n = NULL){
            data = x;
            next = n;
        }
        
        node():next(NULL){}
        ~node(){}
    };
    
    node *head;
    int currentLength;
    
    node *move(int i)const{
        node *p = head;
        while(i >= 0){
            p = p -> next;
            i = i - 1;
        }
        return p;
    }
public:
    sLinkList(){
        head = new node;
        currentLength = 0;
        
    }
    
    ~sLinkList(){
        clear();
        delete head;
    }
    
    void clear(){
        node *p, *q;
        p = head -> next;
        head -> next = NULL;
        while(p != NULL){
            q = p;
            p = p -> next;
            delete q;
        }
        currentLength = 0;
    }
    
    int length()const{
        return currentLength;
    }
    
    void insert(int i, const elemType &x){
        node *p = move(i - 1);
        p = new node(x, p -> next);
        currentLength = currentLength + 1;
    }
    
    void remove(int i){
        node *p = move(i - 1);
        node *q = p -> next;
        p -> next = q -> next;
        delete q;
        currentLength = currentLength - 1;
    }
    
    elemType search(const elemType &x)const{
        int k = 0;
        node *p = head -> next;
        while(p != NULL){
            if(p -> data  == x){
                return k;
            }
            p = p -> next;
            k = k + 1;
        }
        
        return -1;
    }
    
    elemType visit(int i)const{
        return (move(i)) -> data;
    }
    
    void traverse()const{
        node *p = head -> next;
        while(p != NULL){
            cout << p -> data << " ";
            p = p -> next;
        }
        cout << endl;
    }
};

總結:

從鏈表運算的實現來看,在順序表中性能很好的visit(i)在鏈表中的時間複雜度爲O(N),而在順序表中性能較差的插入刪除操作在鏈表中具有較好的性能。對於單鏈表而言,如果當前指針已經定位到插入或刪除位置的前一個位置,則插入和刪除都只需要常量的時間。所以鏈表適合那些經常需要執行插入刪除但很少訪問制定位置元素的線性表。

 

 

以上內容純屬個人學習總結,不代表任何團體或單位。

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章