『數據結構與算法』—— 棧

定義

先入後出,有點類似將書放在抽屜裏,先放進去的書,如果想拿到他,必須將他上面書拿完纔可以,粗俗的形容可以這麼比喻:“吃了吐”叫棧,“吃了拉”叫隊列,話粗理不粗。棧是一種“操作受限”的線性表,只允許一段插入和刪除數據。

從功能上看,數組或鏈表確實可代替棧,但是在特定的情況中,數組和鏈表暴露的接口太多,操作上雖然靈活,但是很多條件不可控,使用上當然容易出現問題。

當某個數據集合只涉及在一段插入和刪除數據,並且滿足先進後出的特性,我們就應該首選棧這種數據結構。

實現

根據其定義和特點,棧主要包含兩個操作,入棧和出棧。數組和鏈表都可以實現,用數組實現的棧叫做 順序棧,用鏈表實現的棧叫做 鏈式棧。後面會貼上具體的實現代碼和測試用例。

棧存儲數據只需要一個大小爲 n 的數組就足夠了,在操作數據的過程中,只需要一兩個臨時變量存儲空間,所以空間複雜度是 O(1),至於入棧和出棧的時間複雜度也是 O(1)。

練習

數組實現棧(支持動態擴容)

需要注意點:

  1. 當數據不斷增加,大小達到閾值,也就是容器滿了,此時大小需要擴容到原來的兩倍。
  2. 當數據不斷減小,大小達到整個大小四分之一時,此時大小需要縮小爲原來的 1/2。
class ArrayStack<T> implements Iterable<T>{
    private T[] data;
    private int totalCount;
    private int count;

    ArrayStack(int capacity) {
        data = (T[]) new Object[capacity];
        totalCount = capacity;
    }

    private boolean push(T t) {
        if (count == totalCount) {
            resize(totalCount * 2);
        }
        data[count] = t;
        count++;
        System.out.println("push: " + t + "  data:\t" + Arrays.toString(data));
        return true;
    }

    private T pop() {
        if (count == 0) return null;
        T t = data[count - 1];
        data[count - 1] = null;
        count --;
        if (count == totalCount / 4 && totalCount / 2 != 0) {
            resize(totalCount / 2);
        }
        System.out.println("pop: " + t + "  data:\t" + Arrays.toString(data));
        return t;
    }

    boolean isEmpty() {
        return count == 0;
    }

    int size() {
        return count;
    }

    T peek() {
        if (count == 0) {
            return null;
        }
        T t = data[count - 1];
        System.out.println("peek: " + t + "  data:\t" + Arrays.toString(data));
        return t;
    }

    private void resize(int newSize) {
        T[] newData = (T[]) new Object[newSize];
        for (int i = 0; i < count; i++) {
            newData[i] = data[i];
        }
        totalCount = newData.length;
        System.out.println("擴容前:" + data.length);
        data = newData;
        System.out.println("重新調整大小:\t" + data.length + "  data:\t" + Arrays.toString(data));
    }

    public static void main(String[] args) {
        ArrayStack<Integer> data = new ArrayStack<Integer>(4);
        data.push(1);
        data.push(2);
        data.push(3);
        data.push(4);
        data.push(5);
        data.push(6);
        System.out.println("size:\t" + data.size());
        System.out.println("isEmpty:\t" + data.isEmpty());
        for (Integer datum : data) {
            System.out.print(datum);
        }
        System.out.println();
        data.pop();
        data.pop();
        data.pop();
        data.pop();
        data.peek();
        data.peek();
        data.peek();
    }

    @Override
    public Iterator<T> iterator() {
        return new ArrayIterator();
    }
    class ArrayIterator implements Iterator<T> {
        int i = count;
        @Override
        public boolean hasNext() {
            return i > 0;
        }

        @Override
        public T next() {
            return data[--i];
        }

        @Override
        public void remove() {

        }
    }
}

這裏如果需要支持加強 for 循環,則需要創建自定義實現 Iterator 類。

運行結果:

push: 1  data:  [1, null, null, null]
push: 2  data:  [1, 2, null, null]
push: 3  data:  [1, 2, 3, null]
push: 4  data:  [1, 2, 3, 4]
擴容前:4
重新調整大小: 8  data:    [1, 2, 3, 4, null, null, null, null]
push: 5  data:  [1, 2, 3, 4, 5, null, null, null]
push: 6  data:  [1, 2, 3, 4, 5, 6, null, null]
size:   6
isEmpty:    false
654321
pop: 6  data:   [1, 2, 3, 4, 5, null, null, null]
pop: 5  data:   [1, 2, 3, 4, null, null, null, null]
pop: 4  data:   [1, 2, 3, null, null, null, null, null]
擴容前:8
重新調整大小: 4  data:    [1, 2, null, null]
pop: 3  data:   [1, 2, null, null]
peek: 2  data:  [1, 2, null, null]
peek: 2  data:  [1, 2, null, null]
peek: 2  data:  [1, 2, null, null]

鏈表實現棧

需要注意的是臨界值的判斷。

class LinkedStack<T> implements Iterable<T> {
    Node<T> head = null;
    int count = 0;

    void push(T t) {
        Node<T> node = createNode(t);
        if (head == null) {
            head = node;
        } else {
            node.next = head;
            head = node;
        }
        count++;
        System.out.println("push:\t" + t + "  data:\t" + head.toString());
    }

    T pop() {
        if (head == null) {
            return null;
        }
        T t = head.value;
        head = head.next;
        if (head != null) {
            System.out.println("pop:\t" + t + "  data:\t" + head.toString());
        } else {
            System.out.println("pop:\t" + t + "  data:\tnull");
        }
        count--;
        return t;
    }

    boolean isEmpty() {
        return count == 0;
    }

    int size() {
        return count;
    }

    T peek() {
        if (head == null) {
            return null;
        }
        T t = head.value;
        System.out.println("peek:\t" + t + "  data:\t" + head.toString());
        return t;
    }

    Node<T> createNode(T t) {
        return new Node<T>(t, null);
    }

    public static void main(String[] args) {
        LinkedStack<Integer> stack = new LinkedStack<Integer>();
        stack.push(1);
        stack.push(2);
        stack.push(3);
        stack.push(4);
        System.out.println("size:\t" + stack.size());
        System.out.println("isEmpty:\t" + stack.isEmpty());
        for (Integer integer : stack) {
            System.out.println(integer);
        }
        stack.peek();
        stack.peek();
        stack.peek();
        stack.pop();
        stack.pop();
        stack.pop();
        stack.pop();
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        for (T t : this) {
            sb.append(t).append(" ");
        }
        sb.append("\n");
        return sb.toString();
    }

    void clear() {
        head = null;
        count = 0;
    }

    @Override
    public Iterator<T> iterator() {
        return new LinkedIterator();
    }

    class LinkedIterator implements Iterator<T> {
        Node<T> first = head;
        int n = count;

        @Override
        public boolean hasNext() {
            return n > 0;
        }

        @Override
        public T next() {
            T t = first.value;
            first = first.next;
            n--;
            return t;
        }

        @Override
        public void remove() {

        }
    }
}

運行結果:

push:   1  data:    1 
push:   2  data:    2 1 
push:   3  data:    3 2 1 
push:   4  data:    4 3 2 1 
size:   4
isEmpty:    false
4321
peek:   4  data:    4 3 2 1 
peek:   4  data:    4 3 2 1 
peek:   4  data:    4 3 2 1 
pop:    4  data:    3 2 1 
pop:    3  data:    2 1 
pop:    2  data:    1 
pop:    1  data:    null

棧在括號匹配中的應用

括號一般都是一一對應的,那可以用棧保存未匹配的左括號,從左到又進行掃描。

class StackTest1 {
    public static void main(String[] args) {
        LinkedStack<String> stack = new LinkedStack<String>();
        stack.push("[");
        stack.push("{");
        stack.push("『");
        stack.push("「");
        stack.push("」");
        stack.push("』");
        stack.push("}");
        stack.push("]");
        System.out.println(stack.toString());
        System.out.println("is correct:\t" + isCorrect(stack));
    }

    private static boolean isCorrect(LinkedStack<String> stack) {
        boolean isCorrect = true;
        LinkedStack<String> stack1 = new LinkedStack<String>();
        for (String s : stack) {
            stack1.push(s);
        }
        Iterator<String> iterator = stack.iterator();
        Iterator<String> iterator1 = stack1.iterator();
        while (iterator.hasNext() && iterator1.hasNext()) {
            if (!equals(iterator.next(), iterator1.next())) {
                return false;
            }
        }
        return isCorrect;
    }

    private static boolean equals(String one, String two) {
        return ("[".equals(one) && "]".equals(two)) || ("[".equals(two) && "]".equals(one)) ||
                ("{".equals(one) && "}".equals(two)) || ("{".equals(two) && "}".equals(one)) ||
                ("「".equals(one) && "」".equals(two)) || ("「".equals(two) && "」".equals(one)) ||
                ("『".equals(one) && "』".equals(two)) || ("『".equals(two) && "』".equals(one));
    }
}

瀏覽器在棧的應用

一般瀏覽器支持回退和前進功能,其實可以通過棧來實現這個功能。

  1. 使用兩個棧,一個存儲後退的數據,一個存儲前進的數據
  2. 每次打開新的網址,後退棧壓入,前進棧清空
  3. 每次回退網站,後退棧出棧,前進棧壓入
  4. 在已經後退基礎上前進,後退棧壓入,前進棧出棧
  5. 每次前進和後退都需要判斷各自棧是否可以進行數據操作
class StackTest2 {
    String currentPage = "";
    LinkedStack<String> backStack;
    LinkedStack<String> forwardStack;

    StackTest2() {
        backStack = new LinkedStack<String>();
        forwardStack = new LinkedStack<String>();
    }

    void open(String url) {
        if (currentPage != null) {
            backStack.push(url);
            forwardStack.clear();
        }
        showPage(url, "open");
    }

    boolean canGoBack() {
        return !backStack.isEmpty();
    }

    boolean canGoForward() {
        return !forwardStack.isEmpty();
    }

    void goBack() {
        if (canGoBack()) {
            String back = backStack.pop();
            forwardStack.push(currentPage);
            showPage(back, "go back");
        }
    }

    void goForward() {
        if (canGoForward()) {
            String forward = forwardStack.pop();
            backStack.push(currentPage);
            showPage(forward, "go forward");
        }
    }

    void showCurrentPage() {
        System.out.println("current page url:\t" + currentPage);
    }


    void showPage(String url, String desc) {
        this.currentPage = url;
        System.out.println("current page url:\t" + this.currentPage + "  desc:\t" + desc);
    }

    public static void main(String[] args) {
        StackTest2 stack = new StackTest2();
        stack.open("http://www.baidu.com");
        stack.open("http://news.baidu.com/");
        stack.open("http://news.baidu.com/ent");
        stack.goBack();
        stack.goBack();
        stack.goForward();
        stack.open("http://www.qq.com");
        stack.goForward();
        stack.goBack();
        stack.goForward();
        stack.goBack();
        stack.goBack();
        stack.goBack();
        stack.goBack();
        stack.showCurrentPage();
    }
}

參考自極客時間

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章