Innodb鎖機制

轉載自:http://blog.chinaunix.net/uid-24111901-id-2627857.html

InnoDB鎖問題

InnoDB與MyISAM的最大不同有兩點:一是支持事務(TRANSACTION);二是採用了行級鎖。行級鎖與表級鎖本來就有許多不同之處,另外,事務的引入也帶來了一些新問題。下面我們先介紹一點背景知識,然後詳細討論InnoDB的鎖問題。

背景知識

1.事務(Transaction)及其ACID屬性

事務是由一組SQL語句組成的邏輯處理單元,事務具有以下4個屬性,通常簡稱爲事務的ACID屬性。

l         原子性(Atomicity):事務是一個原子操作單元,其對數據的修改,要麼全都執行,要麼全都不執行。

l         一致性(Consistent):在事務開始和完成時,數據都必須保持一致狀態。這意味着所有相關的數據規則都必須應用於事務的修改,以保持數據的完整性;事務結束時,所有的內部數據結構(如B樹索引或雙向鏈表)也都必須是正確的。

l         隔離性(Isolation):數據庫系統提供一定的隔離機制,保證事務在不受外部併發操作影響的“獨立”環境執行。這意味着事務處理過程中的中間狀態對外部是不可見的,反之亦然。

l         持久性(Durable):事務完成之後,它對於數據的修改是永久性的,即使出現系統故障也能夠保持。

銀行轉帳就是事務的一個典型例子。

2.併發事務處理帶來的問題

相對於串行處理來說,併發事務處理能大大增加數據庫資源的利用率,提高數據庫系統的事務吞吐量,從而可以支持更多的用戶。但併發事務處理也會帶來一些問題,主要包括以下幾種情況。

l  更新丟失(Lost Update):當兩個或多個事務選擇同一行,然後基於最初選定的值更新該行時,由於每個事務都不知道其他事務的存在,就會發生丟失更新問題--最後的更新覆蓋了由其他事務所做的更新。例如,兩個編輯人員製作了同一文檔的電子副本。每個編輯人員獨立地更改其副本,然後保存更改後的副本,這樣就覆蓋了原始文檔。最後保存其更改副本的編輯人員覆蓋另一個編輯人員所做的更改。如果在一個編輯人員完成並提交事務之前,另一個編輯人員不能訪問同一文件,則可避免此問題。

l  髒讀(Dirty Reads):一個事務正在對一條記錄做修改,在這個事務完成並提交前,這條記錄的數據就處於不一致狀態;這時,另一個事務也來讀取同一條記錄,如果不加控制,第二個事務讀取了這些“髒”數據,並據此做進一步的處理,就會產生未提交的數據依賴關係。這種現象被形象地叫做"髒讀"。

l  不可重複讀(Non-Repeatable Reads):一個事務在讀取某些數據後的某個時間,再次讀取以前讀過的數據,卻發現其讀出的數據已經發生了改變、或某些記錄已經被刪除了!這種現象就叫做“不可重複讀”。

l  幻讀(Phantom Reads):一個事務按相同的查詢條件重新讀取以前檢索過的數據,卻發現其他事務插入了滿足其查詢條件的新數據,這種現象就稱爲“幻讀”。

3.事務隔離級別

在上面講到的併發事務處理帶來的問題中,“更新丟失”通常是應該完全避免的。但防止更新丟失,並不能單靠數據庫事務控制器來解決,需要應用程序對要更新的數據加必要的鎖來解決,因此,防止更新丟失應該是應用的責任。

“髒讀”、“不可重複讀”和“幻讀”,其實都是數據庫讀一致性問題,必須由數據庫提供一定的事務隔離機制來解決。數據庫實現事務隔離的方式,基本上可分爲以下兩種。

l  一種是在讀取數據前,對其加鎖,阻止其他事務對數據進行修改。

l  另一種是不用加任何鎖,通過一定機制生成一個數據請求時間點的一致性數據快照(Snapshot),並用這個快照來提供一定級別(語句級或事務級)的一致性讀取。從用戶的角度來看,好象是數據庫可以提供同一數據的多個版本,因此,這種技術叫做數據多版本併發控制(MultiVersion Concurrency Control,簡稱MVCC或MCC),也經常稱爲多版本數據庫。

數據庫的事務隔離越嚴格,併發副作用越小,但付出的代價也就越大,因爲事務隔離實質上就是使事務在一定程度上“串行化”進行,這顯然與“併發”是矛盾的。同時,不同的應用對讀一致性和事務隔離程度的要求也是不同的,比如許多應用對“不可重複讀”和“幻讀”並不敏感,可能更關心數據併發訪問的能力。

爲了解決“隔離”與“併發”的矛盾,ISO/ANSI SQL92定義了4個事務隔離級別,每個級別的隔離程度不同,允許出現的副作用也不同,應用可以根據自己的業務邏輯要求,通過選擇不同的隔離級別來平衡“隔離”與“併發”的矛盾。表20-5很好地概括了這4個隔離級別的特性。

表20-5                                             4種隔離級別比較

讀數據一致性及允許的併發副作用

隔離級別

讀數據一致性

髒讀

不可重複讀

幻讀

未提交讀(Read uncommitted)

最低級別,只能保證不讀取物理上損壞的數據

已提交度(Read committed)

語句級

可重複讀(Repeatable read)

事務級

可序列化(Serializable)

最高級別,事務級

最後要說明的是:各具體數據庫並不一定完全實現了上述4個隔離級別,例如,Oracle只提供Read committed和Serializable兩個標準隔離級別,另外還提供自己定義的Read only隔離級別;SQL Server除支持上述ISO/ANSI SQL92定義的4個隔離級別外,還支持一個叫做“快照”的隔離級別,但嚴格來說它是一個用MVCC實現的Serializable隔離級別。MySQL支持全部4個隔離級別,但在具體實現時,有一些特點,比如在一些隔離級別下是採用MVCC一致性讀,但某些情況下又不是,這些內容在後面的章節中將會做進一步介紹。

獲取InnoDB行鎖爭用情況    

可以通過檢查InnoDB_row_lock狀態變量來分析系統上的行鎖的爭奪情況:

mysql> show status like 'innodb_row_lock%';

+-------------------------------+-------+

| Variable_name                 | Value |

+-------------------------------+-------+

| InnoDB_row_lock_current_waits | 0     |

| InnoDB_row_lock_time          | 0     |

| InnoDB_row_lock_time_avg      | 0     |

| InnoDB_row_lock_time_max      | 0     |

| InnoDB_row_lock_waits         | 0     |

+-------------------------------+-------+

5 rows in set (0.01 sec)

如果發現鎖爭用比較嚴重,如InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比較高,還可以通過設置InnoDB Monitors來進一步觀察發生鎖衝突的表、數據行等,並分析鎖爭用的原因。

具體方法如下:

mysql> CREATE TABLE innodb_monitor(a INT) ENGINE=INNODB;

Query OK, 0 rows affected (0.14 sec)

然後就可以用下面的語句來進行查看:

mysql> Show innodb status\G;

*************************** 1. row ***************************

  Type: InnoDB

  Name:

Status:

------------

TRANSACTIONS

------------

Trx id counter 0 117472192

Purge done for trx's n:o < 0 117472190 undo n:o < 0 0

History list length 17

Total number of lock structs in row lock hash table 0

LIST OF TRANSACTIONS FOR EACH SESSION:

---TRANSACTION 0 117472185, not started, process no 11052, OS thread id 1158191456

MySQL thread id 200610, query id 291197 localhost root

---TRANSACTION 0 117472183, not started, process no 11052, OS thread id 1158723936

MySQL thread id 199285, query id 291199 localhost root

Show innodb status

監視器可以通過發出下列語句來停止查看:

mysql> DROP TABLE innodb_monitor;

Query OK, 0 rows affected (0.05 sec)

設置監視器後,在SHOW INNODB STATUS的顯示內容中,會有詳細的當前鎖等待的信息,包括表名、鎖類型、鎖定記錄的情況等,便於進行進一步的分析和問題的確定。打開監視器以後,默認情況下每15秒會向日志中記錄監控的內容,如果長時間打開會導致.err文件變得非常的巨大,所以用戶在確認問題原因之後,要記得刪除監控表以關閉監視器,或者通過使用“--console”選項來啓動服務器以關閉寫日誌文件。

InnoDB的行鎖模式及加鎖方法

InnoDB實現了以下兩種類型的行鎖。

l  共享鎖(S):允許一個事務去讀一行,阻止其他事務獲得相同數據集的排他鎖。

l  排他鎖(X):允許獲得排他鎖的事務更新數據,阻止其他事務取得相同數據集的共享讀鎖和排他寫鎖。

另外,爲了允許行鎖和表鎖共存,實現多粒度鎖機制,InnoDB還有兩種內部使用的意向鎖(Intention Locks),這兩種意向鎖都是表鎖。

l  意向共享鎖(IS):事務打算給數據行加行共享鎖,事務在給一個數據行加共享鎖前必須先取得該表的IS鎖。

l  意向排他鎖(IX):事務打算給數據行加行排他鎖,事務在給一個數據行加排他鎖前必須先取得該表的IX鎖。

上述鎖模式的兼容情況具體如表20-6所示。

表20-6                                            InnoDB行鎖模式兼容性列表

請求鎖模式

   是否兼容

當前鎖模式

X

IX

S

IS

X

衝突

衝突

衝突

衝突

IX

衝突

兼容

衝突

兼容

S

衝突

衝突

兼容

兼容

IS

衝突

兼容

兼容

兼容

如果一個事務請求的鎖模式與當前的鎖兼容,InnoDB就將請求的鎖授予該事務;反之,如果兩者不兼容,該事務就要等待鎖釋放。

意向鎖是InnoDB自動加的,不需用戶干預。對於UPDATE、DELETE和INSERT語句,InnoDB會自動給涉及數據集加排他鎖(X);對於普通SELECT語句,InnoDB不會加任何鎖;事務可以通過以下語句顯示給記錄集加共享鎖或排他鎖。

  共享鎖(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE。

  排他鎖(X):SELECT * FROM table_name WHERE ... FOR UPDATE。

用SELECT ... IN SHARE MODE獲得共享鎖,主要用在需要數據依存關係時來確認某行記錄是否存在,並確保沒有人對這個記錄進行UPDATE或者DELETE操作。但是如果當前事務也需要對該記錄進行更新操作,則很有可能造成死鎖,對於鎖定行記錄後需要進行更新操作的應用,應該使用SELECT... FOR UPDATE方式獲得排他鎖。

在如表20-7所示的例子中,使用了SELECT ... IN SHARE MODE加鎖後再更新記錄,看看會出現什麼情況,其中actor表的actor_id字段爲主鍵。

表20-7                     InnoDB存儲引擎的共享鎖例子

session_1

session_2

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

mysql> select actor_id,first_name,last_name from actor where actor_id = 178;

+----------+------------+-----------+

| actor_id | first_name | last_name |

+----------+------------+-----------+

| 178      | LISA       | MONROE    |

+----------+------------+-----------+

1 row in set (0.00 sec)

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

mysql> select actor_id,first_name,last_name from actor where actor_id = 178;

+----------+------------+-----------+

| actor_id | first_name | last_name |

+----------+------------+-----------+

| 178      | LISA       | MONROE    |

+----------+------------+-----------+

1 row in set (0.00 sec)

當前session對actor_id=178的記錄加share mode 的共享鎖:

mysql> select actor_id,first_name,last_name from actor where actor_id = 178 lock in share mode;

+----------+------------+-----------+

| actor_id | first_name | last_name |

+----------+------------+-----------+

| 178      | LISA       | MONROE    |

+----------+------------+-----------+

1 row in set (0.01 sec)



其他session仍然可以查詢記錄,並也可以對該記錄加share mode的共享鎖:

mysql> select actor_id,first_name,last_name from actor where actor_id = 178 lock in share mode;

+----------+------------+-----------+

| actor_id | first_name | last_name |

+----------+------------+-----------+

| 178      | LISA       | MONROE    |

+----------+------------+-----------+

1 row in set (0.01 sec)

當前session對鎖定的記錄進行更新操作,等待鎖:

mysql> update actor set last_name = 'MONROE T' where actor_id = 178;

等待



其他session也對該記錄進行更新操作,則會導致死鎖退出:

mysql> update actor set last_name = 'MONROE T' where actor_id = 178;

ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

獲得鎖後,可以成功更新:

mysql> update actor set last_name = 'MONROE T' where actor_id = 178;

Query OK, 1 row affected (17.67 sec)

Rows matched: 1  Changed: 1  Warnings: 0


    當使用SELECT...FOR UPDATE加鎖後再更新記錄,出現如表20-8所示的情況。

表20-8                               InnoDB存儲引擎的排他鎖例子

session_1

session_2

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

mysql> select actor_id,first_name,last_name from actor where actor_id = 178;

+----------+------------+-----------+

| actor_id | first_name | last_name |

+----------+------------+-----------+

| 178      | LISA       | MONROE    |

+----------+------------+-----------+

1 row in set (0.00 sec)

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

mysql> select actor_id,first_name,last_name from actor where actor_id = 178;

+----------+------------+-----------+

| actor_id | first_name | last_name |

+----------+------------+-----------+

| 178      | LISA       | MONROE    |

+----------+------------+-----------+

1 row in set (0.00 sec)

當前session對actor_id=178的記錄加for update的共享鎖:

mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;

+----------+------------+-----------+

| actor_id | first_name | last_name |

+----------+------------+-----------+

| 178      | LISA       | MONROE    |

+----------+------------+-----------+

1 row in set (0.00 sec)



其他session可以查詢該記錄,但是不能對該記錄加共享鎖,會等待獲得鎖:

mysql> select actor_id,first_name,last_name from actor where actor_id = 178;

+----------+------------+-----------+

| actor_id | first_name | last_name |

+----------+------------+-----------+

| 178      | LISA       | MONROE    |

+----------+------------+-----------+

1 row in set (0.00 sec)

mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;

等待

當前session可以對鎖定的記錄進行更新操作,更新後釋放鎖:

mysql> update actor set last_name = 'MONROE T' where actor_id = 178;

Query OK, 1 row affected (0.00 sec)

Rows matched: 1  Changed: 1  Warnings: 0

mysql> commit;

Query OK, 0 rows affected (0.01 sec)



其他session獲得鎖,得到其他session提交的記錄:

mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;

+----------+------------+-----------+

| actor_id | first_name | last_name |

+----------+------------+-----------+

| 178      | LISA       | MONROE T  |

+----------+------------+-----------+

1 row in set (9.59 sec)

InnoDB行鎖實現方式

InnoDB行鎖是通過給索引上的索引項加鎖來實現的,這一點MySQL與Oracle不同,後者是通過在數據塊中對相應數據行加鎖來實現的。InnoDB這種行鎖實現特點意味着:只有通過索引條件檢索數據,InnoDB才使用行級鎖,否則,InnoDB將使用表鎖!

在實際應用中,要特別注意InnoDB行鎖的這一特性,不然的話,可能導致大量的鎖衝突,從而影響併發性能。下面通過一些實際例子來加以說明。

(1)在不通過索引條件查詢的時候,InnoDB確實使用的是表鎖,而不是行鎖。

在如表20-9所示的例子中,開始tab_no_index表沒有索引:

mysql> create table tab_no_index(id int,name varchar(10)) engine=innodb;

Query OK, 0 rows affected (0.15 sec)

mysql> insert into tab_no_index values(1,'1'),(2,'2'),(3,'3'),(4,'4');

Query OK, 4 rows affected (0.00 sec)

Records: 4  Duplicates: 0  Warnings: 0

表20-9               InnoDB存儲引擎的表在不使用索引時使用表鎖例子             

session_1

session_2

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> select * from tab_no_index where id = 1 ;

+------+------+

| id   | name |

+------+------+

| 1    | 1    |

+------+------+

1 row in set (0.00 sec)

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> select * from tab_no_index where id = 2 ;

+------+------+

| id   | name |

+------+------+

| 2    | 2    |

+------+------+

1 row in set (0.00 sec)

mysql> select * from tab_no_index where id = 1 for update;

+------+------+

| id   | name |

+------+------+

| 1    | 1    |

+------+------+

1 row in set (0.00 sec)



mysql> select * from tab_no_index where id = 2 for update;

等待

在如表20-9所示的例子中,看起來session_1只給一行加了排他鎖,但session_2在請求其他行的排他鎖時,卻出現了鎖等待!原因就是在沒有索引的情況下,InnoDB只能使用表鎖。當我們給其增加一個索引後,InnoDB就只鎖定了符合條件的行,如表20-10所示。

創建tab_with_index表,id字段有普通索引:

mysql> create table tab_with_index(id int,name varchar(10)) engine=innodb;

Query OK, 0 rows affected (0.15 sec)

mysql> alter table tab_with_index add index id(id);

Query OK, 4 rows affected (0.24 sec)

Records: 4  Duplicates: 0  Warnings: 0

表20-10                                InnoDB存儲引擎的表在使用索引時使用行鎖例子

session_1

session_2

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> select * from tab_with_index where id = 1 ;

+------+------+

| id   | name |

+------+------+

| 1    | 1    |

+------+------+

1 row in set (0.00 sec)

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> select * from tab_with_index where id = 2 ;

+------+------+

| id   | name |

+------+------+

| 2    | 2    |

+------+------+

1 row in set (0.00 sec)

mysql> select * from tab_with_index where id = 1 for update;

+------+------+

| id   | name |

+------+------+

| 1    | 1    |

+------+------+

1 row in set (0.00 sec)



mysql> select * from tab_with_index where id = 2 for update;

+------+------+

| id   | name |

+------+------+

| 2    | 2    |

+------+------+

1 row in set (0.00 sec)

(2)由於MySQL的行鎖是針對索引加的鎖,不是針對記錄加的鎖,所以雖然是訪問不同行的記錄,但是如果是使用相同的索引鍵,是會出現鎖衝突的。應用設計的時候要注意這一點。

在如表20-11所示的例子中,表tab_with_index的id字段有索引,name字段沒有索引:

mysql> alter table tab_with_index drop index name;

Query OK, 4 rows affected (0.22 sec)

Records: 4  Duplicates: 0  Warnings: 0

mysql> insert into tab_with_index  values(1,'4');

Query OK, 1 row affected (0.00 sec)

mysql> select * from tab_with_index where id = 1;

+------+------+

| id   | name |

+------+------+

| 1    | 1    |

| 1    | 4    |

+------+------+

2 rows in set (0.00 sec)

表20-11                InnoDB存儲引擎使用相同索引鍵的阻塞例子       

session_1

session_2

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> select * from tab_with_index where id = 1 and name = '1' for update;

+------+------+

| id   | name |

+------+------+

| 1    | 1    |

+------+------+

1 row in set (0.00 sec)



雖然session_2訪問的是和session_1不同的記錄,但是因爲使用了相同的索引,所以需要等待鎖:

mysql> select * from tab_with_index where id = 1 and name = '4' for update;

等待

(3)當表有多個索引的時候,不同的事務可以使用不同的索引鎖定不同的行,另外,不論是使用主鍵索引、唯一索引或普通索引,InnoDB都會使用行鎖來對數據加鎖。

在如表20-12所示的例子中,表tab_with_index的id字段有主鍵索引,name字段有普通索引:

mysql> alter table tab_with_index add index name(name);

Query OK, 5 rows affected (0.23 sec)

Records: 5  Duplicates: 0  Warnings: 0

表20-12                                  InnoDB存儲引擎的表使用不同索引的阻塞例子

session_1

session_2

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> set autocommit=0;

Query OK, 0 rows affected (0.00 sec)

mysql> select * from tab_with_index where id = 1 for update;

+------+------+

| id   | name |

+------+------+

| 1    | 1    |

| 1    | 4    |

+------+------+

2 rows in set (0.00 sec)



Session_2使用name的索引訪問記錄,因爲記錄沒有被索引,所以可以獲得鎖:

mysql> select * from tab_with_index where name = '2' for update;

+------+------+

| id   | name |

+------+------+

| 2    | 2    |

+------+------+

1 row in set (0.00 sec)


由於訪問的記錄已經被session_1鎖定,所以等待獲得鎖。:

mysql> select * from tab_with_index where name = '4' for update;

(4)即便在條件中使用了索引字段,但是否使用索引來檢索數據是由MySQL通過判斷不同執行計劃的代價來決定的,如果MySQL認爲全表掃描效率更高,比如對一些很小的表,它就不會使用索引,這種情況下InnoDB將使用表鎖,而不是行鎖。因此,在分析鎖衝突時,別忘了檢查SQL的執行計劃,以確認是否真正使用了索引。關於MySQL在什麼情況下不使用索引的詳細討論,參見本章“索引問題”一節的介紹。

在下面的例子中,檢索值的數據類型與索引字段不同,雖然MySQL能夠進行數據類型轉換,但卻不會使用索引,從而導致InnoDB使用表鎖。通過用explain檢查兩條SQL的執行計劃,我們可以清楚地看到了這一點。

例子中tab_with_index表的name字段有索引,但是name字段是varchar類型的,如果where條件中不是和varchar類型進行比較,則會對name進行類型轉換,而執行的全表掃描。

mysql> alter table tab_no_index add index name(name);

Query OK, 4 rows affected (8.06 sec)

Records: 4  Duplicates: 0  Warnings: 0

mysql> explain select * from tab_with_index where name = 1 \G

*************************** 1. row ***************************

           id: 1

  select_type: SIMPLE

        table: tab_with_index

         type: ALL

possible_keys: name

          key: NULL

      key_len: NULL

          ref: NULL

         rows: 4

        Extra: Using where

1 row in set (0.00 sec)

mysql> explain select * from tab_with_index where name = '1' \G

*************************** 1. row ***************************

           id: 1

  select_type: SIMPLE

        table: tab_with_index

         type: ref

possible_keys: name

          key: name

      key_len: 23

          ref: const

         rows: 1

        Extra: Using where

1 row in set (0.00 sec)

間隙鎖(Next-Key鎖)

當我們用範圍條件而不是相等條件檢索數據,並請求共享或排他鎖時,InnoDB會給符合條件的已有數據記錄的索引項加鎖;對於鍵值在條件範圍內但並不存在的記錄,叫做“間隙(GAP)”,InnoDB也會對這個“間隙”加鎖,這種鎖機制就是所謂的間隙鎖(Next-Key鎖)。

舉例來說,假如emp表中只有101條記錄,其empid的值分別是 1,2,...,100,101,下面的SQL:

Select * from  emp where empid > 100 for update;

是一個範圍條件的檢索,InnoDB不僅會對符合條件的empid值爲101的記錄加鎖,也會對empid大於101(這些記錄並不存在)的“間隙”加鎖。

InnoDB使用間隙鎖的目的,一方面是爲了防止幻讀,以滿足相關隔離級別的要求,對於上面的例子,要是不使用間隙鎖,如果其他事務插入了empid大於100的任何記錄,那麼本事務如果再次執行上述語句,就會發生幻讀;另外一方面,是爲了滿足其恢復和複製的需要。有關其恢復和複製對鎖機制的影響,以及不同隔離級別下InnoDB使用間隙鎖的情況,在後續的章節中會做進一步介紹。

很顯然,在使用範圍條件檢索並鎖定記錄時,InnoDB這種加鎖機制會阻塞符合條件範圍內鍵值的併發插入,這往往會造成嚴重的鎖等待。因此,在實際應用開發中,尤其是併發插入比較多的應用,我們要儘量優化業務邏輯,儘量使用相等條件來訪問更新數據,避免使用範圍條件。

還要特別說明的是,InnoDB除了通過範圍條件加鎖時使用間隙鎖外,如果使用相等條件請求給一個不存在的記錄加鎖,InnoDB也會使用間隙鎖!

在如表20-13所示的例子中,假如emp表中只有101條記錄,其empid的值分別是1,2,......,100,101。

表20-13                InnoDB存儲引擎的間隙鎖阻塞例子

session_1

session_2

mysql> select @@tx_isolation;

+-----------------+

| @@tx_isolation  |

+-----------------+

| REPEATABLE-READ |

+-----------------+

1 row in set (0.00 sec)

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

mysql> select @@tx_isolation;

+-----------------+

| @@tx_isolation  |

+-----------------+

| REPEATABLE-READ |

+-----------------+

1 row in set (0.00 sec)

mysql> set autocommit = 0;

Query OK, 0 rows affected (0.00 sec)

當前session對不存在的記錄加for update的鎖:

mysql> select * from emp where empid = 102 for update;

Empty set (0.00 sec)



這時,如果其他session插入empid爲201的記錄(注意:這條記錄並不存在),也會出現鎖等待:

mysql>insert into emp(empid,...) values(201,...);

阻塞等待

Session_1 執行rollback:

mysql> rollback;

Query OK, 0 rows affected (13.04 sec)



由於其他session_1回退後釋放了Next-Key鎖,當前session可以獲得鎖併成功插入記錄:

mysql>insert into emp(empid,...) values(201,...);

Query OK, 1 row affected (13.35 sec)



發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章