信號量 互斥鎖 條件變量的區別(講的很好,值得收藏)

轉自http://www.cnblogs.com/lonelycatcher/archive/2011/12/20/2294161.html


信號量用在多線程多任務同步的,一個線程完成了某一個動作就通過信號量告訴別的線程,別的線程再進行某些動作(大家都在semtake的時候,就阻塞在哪裏)。而互斥鎖是用在多線程多任務互斥的,一個線程佔用了某一個資源,那麼別的線程就無法訪問,直到這個線程unlock,其他的線程纔開始可以利用這個資源。比如對全局變量的訪問,有時要加鎖,操作完了,在解鎖。有的時候鎖和信號量會同時使用的”
也就是說,信號量不一定是鎖定某一個資源,而是流程上的概念,比如:有A,B兩個線程,B線程要等A線程完成某一任務以後再進行自己下面的步驟,這個任務並不一定是鎖定某一資源,還可以是進行一些計算或者數據處理之類。而線程互斥量則是“鎖住某一資源”的概念,在鎖定期間內,其他線程無法對被保護的數據進行操作。在有些情況下兩者可以互換。

兩者之間的區別:

作用域
信號量: 進程間或線程間(linux僅線程間)
互斥鎖: 線程間

上鎖時
信號量: 只要信號量的value大於0,其他線程就可以sem_wait成功,成功後信號量的value減一。若value值不大於0,則sem_wait阻塞,直到sem_post釋放後value值加一
互斥鎖: 只要被鎖住,其他任何線程都不可以訪問被保護的資源

成功後否則就阻塞

以下是信號燈(量)的一些概念:

信號燈與互斥鎖和條件變量的主要不同在於”燈”的概念,燈亮則意味着資源可用,燈滅則意味着不可用。如果說後兩中同步方式側重於”等待”操作,即資源不可用的話,信號燈機制則側重於點燈,即告知資源可用;沒有等待線程的解鎖或激發條件都是沒有意義的,而沒有等待燈亮的線程的點燈操作則有效,且能保持燈亮狀態。當然,這樣的操作原語也意味着更多的開銷。

信號燈的應用除了燈亮/燈滅這種二元燈以外,也可以採用大於1的燈數,以表示資源數大於1,這時可以稱之爲多元燈。

1. 創建和 註銷

POSIX信號燈標準定義了有名信號燈和無名信號燈兩種,但LinuxThreads的實現僅有無名燈,同時有名燈除了總是可用於多進程之間以外,在使用上與無名燈並沒有很大的區別,因此下面僅就無名燈進行討論。

int sem_init(sem_t *sem, int pshared, unsigned int value)
這是創建信號燈的API,其中value爲信號燈的初值,pshared表示是否爲多進程共享而不僅僅是用於一個進程。LinuxThreads沒有實現多進程共享信號燈,因此所有非0值的pshared輸入都將使sem_init()返回-1,且置errno爲ENOSYS。初始化好的信號燈由sem變量表徵,用於以下點燈、滅燈操作。

int sem_destroy(sem_t * sem)
被註銷的信號燈sem要求已沒有線程在等待該信號燈,否則返回-1,且置errno爲EBUSY。除此之外,LinuxThreads的信號燈 註銷函數不做其他動作。

2. 點燈和滅燈

int sem_post(sem_t * sem)

點燈操作將信號燈值原子地加1,表示增加一個可訪問的資源。

int sem_wait(sem_t * sem)
int sem_trywait(sem_t * sem)

sem_wait()爲等待燈亮操作,等待燈亮(信號燈值大於0),然後將信號燈原子地減1,並返回。sem_trywait()爲sem_wait()的非阻塞版,如果信號燈計數大於0,則原子地減1並返回0,否則立即返回-1,errno置爲EAGAIN。

3. 獲取燈值

int sem_getvalue(sem_t * sem, int * sval)

讀取sem中的燈計數,存於*sval中,並返回0。

4. 其他

sem_wait()被實現爲取消點,而且在支持原子”比較且交換”指令的體系結構上,sem_post()是唯一能用於異步信號處理函數的POSIX異步信號 安全的API。

----------------------------
線程同步:何時互斥鎖不夠,還需要條件變量?

假設有共享的資源sum,與之相關聯的mutex 是lock_s.假設每個線程對sum的操作很簡單的,與sum的狀態無關,比如只是sum++.那麼只用mutex足夠了.程序員只要確保每個線程操作前,取得lock,然後sum++,再unlock即可.每個線程的代碼將像這樣
add()
{
pthread_mutex_lock(lock_s);
sum++;
pthread_mutex_unlock(lock_s);
}

  如果操作比較複雜,假設線程t0,t1,t2的操作是sum++,而線程t3則是在sum到達100的時候,打印出一條信息,並對sum清零. 這種情況下,如果只用mutex, 則t3需要一個循環,每個循環裏先取得lock_s,然後檢查sum的狀態,如果sum>=100,則打印並清零,然後unlock.如果sum& amp; lt;100,則unlock,並sleep()本線程合適的一段時間.

 這個時候,t0,t1,t2的代碼不變,t3的代碼如下
print()
{
while (1)
{
pthread_mutex_lock(lock_s);
if(sum<100)
{
printf(“sum reach 100!”);
pthread_mutex_unlock(lock_s);
}
else
{
pthread_mutex_unlock(lock_s);
my_thread_sleep(100);
return OK;
}
}
}

這種辦法有兩個問題
1) sum在大多數情況下不會到達100,那麼對t3的代碼來說,大多數情況下,走的是else分支,只是lock和unlock,然後sleep().這浪費了CPU處理時間.
2) 爲了節省CPU處理時間,t3會在探測到sum沒到達100的時候sleep()一段時間.這樣卻又帶來另外一個問題,亦即t3響應速度下降.可能在sum到達200的時候,t4纔會醒過來.
3) 這樣,程序員在設置sleep()時間的時候陷入兩難境地,設置得太短了節省不了資源,太長了又降低響應速度.真是難辦啊!

  這個時候,condition variable內褲外穿,從天而降,拯救了焦頭爛額的你.

  你首先定義一個condition variable.
pthread_cond_t cond_sum_ready=PTHREAD_COND_INITIALIZER;

  t0,t1,t2的代碼只要後面加兩行,像這樣
add()
{
pthread_mutex_lock(lock_s);
sum++;
pthread_mutex_unlock(lock_s);
if(sum>=100)
pthread_cond_signal(&cond_sum_ready);
}
而t3的代碼則是
print
{
pthread_mutex_lock(lock_s);
while(sum<100)
pthread_cond_wait(&cond_sum_ready, &lock_s);
printf(“sum is over 100!”);
sum=0;
pthread_mutex_unlock(lock_s);
return OK;
}

注意兩點:
1) 在thread_cond_wait()之前,必須先lock相關聯的mutex, 因爲假如目標條件未滿足,pthread_cond_wait()實際上會unlock該mutex, 然後block,在目標條件滿足後再重新lock該mutex, 然後返回.
2) 爲什麼是while(sum<100),而不是if(sum<100) ?這是因爲在pthread_cond_signal()和pthread_cond_wait()返回之間,有時間差,假設在這個時間差內,還有另外一個線程t4又把sum減少到100以下了,那麼t3在pthread_cond_wait()返回之後,顯然應該再檢查一遍sum的大小.這就是用 while的用意

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章