正則化爲什麼能防止過擬合

1. 概述

在訓練數據不夠多時,或者overtraining時,常常會導致overfitting(過擬合)。其直觀的表現如下圖所示,隨着訓練過程的進行,模型複雜度增加,在training data上的error漸漸減小,但是在驗證集上的error卻反而漸漸增大——因爲訓練出來的網絡過擬合了訓練集,對訓練集外的數據卻不工作。

image.png

爲了防止overfitting,可以用的方法有很多,下文就將以此展開。有一個概念需要先說明,在機器學習算法中,我們常常將原始數據集分爲三部分:

  1. training data
  2. validation data
  3. testing data

這個validation data是什麼?它其實就是用來避免過擬合的,在訓練過程中,我們通常用它來確定一些超參數(比如根據validation data上的accuracy來確定early stopping的epoch大小、根據validation data確定learning rate等等)。那爲啥不直接在testing data上做這些呢?因爲如果在testing data做這些,那麼隨着訓練的進行,我們的網絡實際上就是在一點一點地overfitting我們的testing data,導致最後得到的testing accuracy沒有任何參考意義。因此,training data的作用是計算梯度更新權重,validation data如上所述,testing data則給出一個accuracy以判斷網絡的好壞。

避免過擬合的方法有很多:

  1. early stopping
  2. 數據集擴增(Data augmentation)
  3. 正則化(Regularization)包括L1、L2(L2 regularization也叫weight decay)
  4. dropout。

2. L2範數(L2-normal)

L2正則化就是在代價函數後面再加上一個正則化項:

 

image.png

 

C0代表原始的代價函數,後面那一項就是L2正則化項,它是這樣來的:所有參數w的平方的和,除以訓練集的樣本大小n。λ就是正則項係數,權衡正則項與C0項的比重。另外還有一個係數1/2,1/2經常會看到,主要是爲了後面求導的結果方便,後面那一項求導會產生一個2,與1/2相乘剛好湊整。

L2正則化項是怎麼避免overfitting的呢?我們推導一下看看,先求導:

image.png

可以發現L2正則化項對b的更新沒有影響,但是對於w的更新有影響:

image.png

在不使用L2正則化時,求導結果中w前係數爲1,現在w前面係數爲 1−ηλ/n ,因爲η、λ、n都是正的,所以 1−ηλ/n小於1,它的效果是減小w,這也就是權重衰減(weight decay)的由來。當然考慮到後面的導數項,w最終的值可能增大也可能減小

另外,需要提一下,對於基於mini-batch的隨機梯度下降,w和b更新的公式跟上面給出的有點不同:

image.png

對比上面w的更新公式,可以發現後面那一項變了,變成所有導數加和,乘以η再除以m,m是一個mini-batch中樣本的個數。

到目前爲止,我們只是解釋了L2正則化項有讓w“變小”的效果,但是還沒解釋爲什麼w“變小”可以防止overfitting?一個所謂“顯而易見”的解釋就是:更小的權值w,從某種意義上說,表示網絡的複雜度更低,對數據的擬合剛剛好(這個法則也叫做奧卡姆剃刀),而在實際應用中,也驗證了這一點,L2正則化的效果往往好於未經正則化的效果。

過擬合的時候,擬合函數的係數往往非常大,爲什麼?如下圖所示,過擬合,就是擬合函數需要顧忌每一個點,最終形成的擬合函數波動很大。在某些很小的區間裏,函數值的變化很劇烈。這就意味着函數在某些小區間裏的導數值(絕對值)非常大,由於自變量值可大可小,所以只有係數足夠大,才能保證導數值很大

image.png

而正則化是通過約束參數的範數使其不要太大,所以可以在一定程度上減少過擬合情況

參考文章

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章