[轉]QNX總結-QNX之編寫資源管理器4

如果你認爲本系列文章對你有所幫助,請大家有錢的捧個錢場,點擊此處贊助,贊助額0.1元起步,多少隨意

聲明:本文只用於個人學習交流,若不慎造成侵權,請及時聯繫我,立即予以改正

鋒影

email:[email protected]

 

Handling Read and Write Messages

這篇文章主要描述讀寫消息的處理。

1. Handling the _IO_READ message

io_read處理函數負責處理_IO_READ消息,將收到的數據返回給客戶端,比如當客戶端調用read()/readdir()/fread()/fgetc()等接口時。
消息的定義如下:

struct _io_read {
    uint16_t            type;
    uint16_t            combine_len;
    int32_t             nbytes;
    uint32_t            xtype;
};

typedef union {
    struct _io_read     i;
    /* unsigned char    data[nbytes];    */
    /* nbytes is returned with MsgReply  */
} io_read_t;
  • combine_len,用於消息組合;
  • nbytes,用於客戶端期望讀取的字節數;
  • xtype,這個字段下文會介紹到,主要用於擴展;

下邊是一個完整的消息讀取示例代碼:

#include <errno.h>
#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/iofunc.h>
#include <sys/dispatch.h>

int io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb);

static char                     *buffer = "Hello world\n";

static resmgr_connect_funcs_t   connect_funcs;
static resmgr_io_funcs_t        io_funcs;
static iofunc_attr_t            attr;

main(int argc, char **argv)
{
    /* declare variables we'll be using */
    resmgr_attr_t        resmgr_attr;
    dispatch_t           *dpp;
    dispatch_context_t   *ctp;
    int                  id;

    /* initialize dispatch interface */
    if((dpp = dispatch_create()) == NULL) {
        fprintf(stderr, "%s: Unable to allocate dispatch handle.\n",
                argv[0]);
        return EXIT_FAILURE;
    }

    /* initialize resource manager attributes */
    memset(&resmgr_attr, 0, sizeof resmgr_attr);
    resmgr_attr.nparts_max = 1;
    resmgr_attr.msg_max_size = 2048;

    /* initialize functions for handling messages */
    iofunc_func_init(_RESMGR_CONNECT_NFUNCS, &connect_funcs,
                     _RESMGR_IO_NFUNCS, &io_funcs);
    io_funcs.read = io_read;

    /* initialize attribute structure used by the device */
    iofunc_attr_init(&attr, S_IFNAM | 0666, 0, 0);
    attr.nbytes = strlen(buffer)+1;
    
    /* attach our device name */
    if((id = resmgr_attach(dpp, &resmgr_attr, "/dev/sample", _FTYPE_ANY, 0,
                 &connect_funcs, &io_funcs, &attr)) == -1) {
        fprintf(stderr, "%s: Unable to attach name.\n", argv[0]);
        return EXIT_FAILURE;
    }

    /* allocate a context structure */
    ctp = dispatch_context_alloc(dpp);

    /* start the resource manager message loop */
    while(1) {
        if((ctp = dispatch_block(ctp)) == NULL) {
            fprintf(stderr, "block error\n");
            return EXIT_FAILURE;
        }
        dispatch_handler(ctp);
    }
}

int
io_read (resmgr_context_t *ctp, io_read_t *msg, RESMGR_OCB_T *ocb)
{
    int         nleft;
    int         nbytes;
    int         nparts;
    int         status;

    if ((status = iofunc_read_verify (ctp, msg, ocb, NULL)) != EOK)
        return (status);
        
    if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
        return (ENOSYS);

    /*
     *  On all reads (first and subsequent), calculate
     *  how many bytes we can return to the client,
     *  based upon the number of bytes available (nleft)
     *  and the client's buffer size
     */

    nleft = ocb->attr->nbytes - ocb->offset;
    nbytes = min (msg->i.nbytes, nleft);

    if (nbytes > 0) {
        /* set up the return data IOV */
        SETIOV (ctp->iov, buffer + ocb->offset, nbytes);

        /* set up the number of bytes (returned by client's read()) */
        _IO_SET_READ_NBYTES (ctp, nbytes);

        /*
         * advance the offset by the number of bytes
         * returned to the client.
         */

        ocb->offset += nbytes;
        
        nparts = 1;
    } else {
        /*
         * they've asked for zero bytes or they've already previously
         * read everything
         */
        
        _IO_SET_READ_NBYTES (ctp, 0);
        
        nparts = 0;
    }

    /* mark the access time as invalid (we just accessed it) */

    if (msg->i.nbytes > 0)
        ocb->attr->flags |= IOFUNC_ATTR_ATIME;

    return (_RESMGR_NPARTS (nparts));
}

上述代碼中,ocb結構存放了緩存的偏移位置,此外指向的屬性結構體attr中,存放了緩存的實際大小。而attr中緩衝的大小是通過iofunc_attr_init()接口設置進去的。
此外,在代碼中需要注意用到了ctp->iov,使用SETIOV()宏,將ctp->iov指向了需要回復的數據。
當沒有讀取到數據時,返回(_RESMGR_NPARTS(0)),當讀取到數據後,怎麼來告知客戶端讀取了多少呢?代碼中_IO_SET_READ_NBYTES()宏將讀取的信息保存到了ctp中,當返回到庫的時候,會將讀取的字節數當成MsgReplyv()函數的參數,並通知內核MsgSend()該發送什麼,最終上層便能獲取到字節數。

2. Handling the _IO_WRITE message

io_write處理函數負責處理_IO_WRITE消息,將數據寫入到設備。當客戶端調用write()/fflush()等操作時執行。
消息定義如下:

struct _io_write {
    uint16_t            type;
    uint16_t            combine_len;
    int32_t             nbytes;
    uint32_t            xtype;
    /* unsigned char    data[nbytes]; */
};

typedef union {
    struct _io_write    i;
    /*  nbytes is returned with MsgReply  */
} io_write_t;

這個結構中的字段與io_read_t中一致,下邊看一個寫操作的代碼:

int
io_write (resmgr_context_t *ctp, io_write_t *msg, RESMGR_OCB_T *ocb)
{
    int     status;
    char    *buf;

    if ((status = iofunc_write_verify(ctp, msg, ocb, NULL)) != EOK)
        return (status);

    if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
        return(ENOSYS);

    /* set up the number of bytes (returned by client's write()) */

    _IO_SET_WRITE_NBYTES (ctp, msg->i.nbytes);

    buf = (char *) malloc(msg->i.nbytes + 1);
    if (buf == NULL)
        return(ENOMEM);

    /*
     *  Reread the data from the sender's message buffer.
     *  We're not assuming that all of the data fit into the
     *  resource manager library's receive buffer.
     */

    resmgr_msgread(ctp, buf, msg->i.nbytes, sizeof(msg->i));
    buf [msg->i.nbytes] = '\0'; /* just in case the text is not NULL terminated */
    printf ("Received %d bytes = '%s'\n", msg -> i.nbytes, buf);
    free(buf);

    if (msg->i.nbytes > 0)
        ocb->attr->flags |= IOFUNC_ATTR_MTIME | IOFUNC_ATTR_CTIME;

    return (_RESMGR_NPARTS (0));
}

當在寫入的時候,如果提供的buffer大小不夠,而需要寫入的數據又很大,此時就需要使用一個循環機制來多次寫入了。

3. Methods of return and replying

可以使用各種方式從處理程序中返回到資源管理器庫:

  • 返回錯誤
    比如申請內存不夠時:return (ENOMEM)

  • 返回指向數據的IOV數組
    可以使用IOV數組來指向多片數據,比如如下代碼:

my_header_t     header;
a_buffer_t      buffers[N];

...

SETIOV(&ctp->iov[0], &header, sizeof(header));
SETIOV(&ctp->iov[1], &buffers[i], sizeof(buffers[i]));
return (_RESMGR_NPARTS(2));
  • 返回一個包含數據的緩存
    比如在響應read()請求時,所有的數據都在一個緩存中,那麼可以以下兩種方式:
return (_RESMGR_PTR(ctp, buffer, nbytes));

和:

SETIOV (ctp->iov, buffer, nbytes);
return (_RESMGR_NPARTS(1));
  • 成功返回,但是不攜帶數據
    比如:return (EOK),不過更常見的方式是:return (_RESMGR_NPARTS(0))

  • 讓資源管理器庫去返回

  • 在服務器端執行回覆
    上邊講到的返回情況,都是通過資源管理器庫調用MsgReply*()/MsgError()來解除客戶端的阻塞狀態,在有些case中,你可能不需要這些庫來回復,可以使用return (_RESMGR_NOREPLY)

  • 推遲迴復,讓客戶端保持阻塞
    一個例子是管道資源管理器,當一個客戶端讀取管道時,而此時管道中沒有數據,可以有兩種選擇:1)返回錯誤,2)保持客戶端阻塞,等有數據時再回復。
    另外一個例子是往一個設備寫數據時,希望數據全部寫入後再回復。

  • 返回並告訴庫執行默認處理
    可以執行return (_RESMGR_DEFAULT)

4. Handling other read/write details

4.1 處理xtype成員

從上文中可知,在io_read_t/io_write_t等消息結構中,有一個xtype成員,這個成員包含了可用於調整標準I/O函數行爲的一些擴展信息,如下:

  • _IO_XTYPE_NONE,沒有提供擴展類型信息;
  • _IO_XTYPE_OFFSET,客戶端調用pread()/pread64()/pwrite()/pwrite64()時,不希望用到OCB中的偏移,而是提供了一個一次性的偏移量,該偏移量存放在消息緩衝的開頭,緊跟在struct _io_readstruct _io_write後,比如:
struct myread_offset {
    struct _io_read        read;
    struct _xtype_offset   offset;
}   
  • _IO_XTYPE_READCOND,如果客戶端調用readcond(),通常會對時間和緩衝區的大小增加一些限制。這個限制放置在消息緩衝區的開頭,緊跟在struct _io_readstruct _io_write後,比如:
struct myreadcond {
    struct _io_read        read;
    struct _xtype_readcond cond;
}   
  • _IO_XFLAG_DIR_EXTRA_HINT,只有在讀取目錄時纔有效。

當你不想使用擴展功能時,可以參考以下例子:

int
io_read (resmgr_context_t *ctp, io_read_t *msg,
         RESMGR_OCB_T *ocb)
{
    int    status;

    if ((status = iofunc_read_verify(ctp, msg, ocb, NULL))
         != EOK) {
        return (status);
    }

    /* No special xtypes */
    if ((msg->i.xtype & _IO_XTYPE_MASK) != _IO_XTYPE_NONE)
        return (ENOSYS);

    ...
}

4.2 處理pread*()pwrite*()

客戶端調用pread*()函數時,處理_IO_READ消息的示例代碼如下:

/* we are defining io_pread_t here to make the code below
   simple */
typedef struct {
    struct _io_read         read;
    struct _xtype_offset    offset;
} io_pread_t;

int
io_read (resmgr_context_t *ctp, io_read_t *msg,
         RESMGR_OCB_T *ocb)
{
    off64_t offset; /* where to read from */
    int     status;

    if ((status = iofunc_read_verify(ctp, msg, ocb, NULL))
         != EOK) {
        return(status);
    }
    
    switch(msg->i.xtype & _IO_XTYPE_MASK) {
    case _IO_XTYPE_NONE:
        offset = ocb->offset;
        break;
    case _IO_XTYPE_OFFSET:
        /*
         *  io_pread_t is defined above.
         *  Client is doing a one-shot read to this offset by
         *  calling one of the pread*() functions
         */
        offset = ((io_pread_t *) msg)->offset.offset;
        break;
    default:
        return(ENOSYS);
    }

    ...
}

客戶端調用pwrite*()時,處理_IO_WRITE消息的示例代碼如下:

/* we are defining io_pwrite_t here to make the code below
   simple */
typedef struct {
    struct _io_write        write;
    struct _xtype_offset    offset;
} io_pwrite_t;

int
io_write (resmgr_context_t *ctp, io_write_t *msg,
          RESMGR_OCB_T *ocb)
{
    off64_t offset; /* where to write */
    int     status;
    size_t  skip;   /* offset into msg to where the data
                       resides */

    if ((status = iofunc_write_verify(ctp, msg, ocb, NULL))
         != EOK) {
        return(status);
    }
    
    switch(msg->i.xtype & _IO_XTYPE_MASK) {
    case _IO_XTYPE_NONE:
        offset = ocb->offset;
        skip = sizeof(io_write_t);
        break;
    case _IO_XTYPE_OFFSET:
        /* 
         *  io_pwrite_t is defined above
         *  client is doing a one-shot write to this offset by
         *  calling one of the pwrite*() functions
         */
        offset = ((io_pwrite_t *) msg)->offset.offset;
        skip = sizeof(io_pwrite_t);
        break;
    default:
        return(ENOSYS);
    }

    ...
    
    /* 
     *  get the data from the sender's message buffer, 
     *  skipping all possible header information
     */
    resmgr_msgreadv(ctp, iovs, niovs, skip);
    
    ...
}

需要注意的是,通常情況下在發送消息緩衝中,數據會緊跟着struct _io_write,而在上邊這種情況下,數據緊跟在struct _xtype_offset後邊,這裏邊會存在一個偏移。

4.3 處理readcond()

與處理pread()/_IO_XTYPE_OFFSET類似,如下:

typedef struct {
    struct _io_read        read;
    struct _xtype_readcond cond;
} io_readcond_t

struct _xtype_readcond *cond
...
    CASE _IO_XTYPE_READCOND:
        cond = &((io_readcond_t *)msg)->cond
        break;
}

5. Updating the time for reads and writes

在讀操作的那個示例代碼中,有如下代碼:

if (msg->i.nbytes > 0)
        ocb->attr->flags |= IOFUNC_ATTR_ATIME;

根據POSIX標準,當讀取大於0字節的數據並且成功後,需要去更新訪問時間,但是POSIX標準中並沒有說需要立刻去更新,因此當有多次讀的時候,可能並不想每次都從內核中獲取時間,可以在需要更新的時候再統一更新,這樣做的缺點是時間記錄的不是每一次讀操作的時間。如果想記錄每次讀的時間,那麼可以調用iofunc_time_update()接口,代碼如下:

if (msg->i.nbytes > 0) {
        ocb->attr->flags |= IOFUNC_ATTR_ATIME;
        iofunc_time_update(ocb->attr);
}

寫操作也是一樣的原理。


 

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章