Java中關於內存泄漏出現的原因彙總及如何避免內存泄漏

原文鏈接:https://www.jb51.net/article/92311.htm

轉載:》https://www.jb51.net/article/92311.htm

內存管理的目的就是讓我們在開發中怎麼有效的避免我們的應用出現內存泄漏的問題。內存泄漏大家都不陌生了,簡單粗俗的講,就是該被釋放的對象沒有釋放,一直被某個或某些實例所持有卻不再被使用導致 GC 不能回收。最近自己閱讀了大量相關的文檔資料,打算做個 總結 沉澱下來跟大家一起分享和學習,也給自己一個警示,以後 coding 時怎麼避免這些情況,提高應用的體驗和質量。

我會從 java 內存泄漏的基礎知識開始,並通過具體例子來說明 Android 引起內存泄漏的各種原因,以及如何利用工具來分析應用內存泄漏,最後再做總結。

Java 內存分配策略

Java 程序運行時的內存分配策略有三種,分別是靜態分配,棧式分配,和堆式分配,對應的,三種存儲策略使用的內存空間主要分別是靜態存儲區(也稱方法區)、棧區和堆區。

靜態存儲區(方法區):主要存放靜態數據、全局 static 數據和常量。這塊內存在程序編譯時就已經分配好,並且在程序整個運行期間都存在。

棧區 :當方法被執行時,方法體內的局部變量(其中包括基礎數據類型、對象的引用)都在棧上創建,並在方法執行結束時這些局部變量所持有的內存將會自動被釋放。因爲棧內存分配運算內置於處理器的指令集中,效率很高,但是分配的內存容量有限。

堆區 : 又稱動態內存分配,通常就是指在程序運行時直接 new 出來的內存,也就是對象的實例。這部分內存在不使用時將會由 Java 垃圾回收器來負責回收。

棧與堆的區別:

在方法體內定義的(局部變量)一些基本類型的變量和對象的引用變量都是在方法的棧內存中分配的。當在一段方法塊中定義一個變量時,Java 就會在棧中爲該變量分配內存空間,當超過該變量的作用域後,該變量也就無效了,分配給它的內存空間也將被釋放掉,該內存空間可以被重新使用。

堆內存用來存放所有由 new 創建的對象(包括該對象其中的所有成員變量)和數組。在堆中分配的內存,將由 Java 垃圾回收器來自動管理。在堆中產生了一個數組或者對象後,還可以在棧中定義一個特殊的變量,這個變量的取值等於數組或者對象在堆內存中的首地址,這個特殊的變量就是我們上面說的引用變量。我們可以通過這個引用變量來訪問堆中的對象或者數組。

舉個例子:

1

2

3

4

5

6

7

8

9

public class Sample {

int s1 = 0;

Sample mSample1 = new Sample();

public void method() {

int s2 = 1;

Sample mSample2 = new Sample();

}

}

Sample mSample3 = new Sample();

Sample 類的局部變量 s2 和引用變量 mSample2 都是存在於棧中,但 mSample2 指向的對象是存在於堆上的。
mSample3 指向的對象實體存放在堆上,包括這個對象的所有成員變量 s1 和 mSample1,而它自己存在於棧中。

結論:

局部變量的基本數據類型和引用存儲於棧中,引用的對象實體存儲於堆中。—— 因爲它們屬於方法中的變量,生命週期隨方法而結束。

成員變量全部存儲與堆中(包括基本數據類型,引用和引用的對象實體)—— 因爲它們屬於類,類對象終究是要被new出來使用的。

瞭解了 Java 的內存分配之後,我們再來看看 Java 是怎麼管理內存的。

Java是如何管理內存

Java的內存管理就是對象的分配和釋放問題。在 Java 中,程序員需要通過關鍵字 new 爲每個對象申請內存空間 (基本類型除外),所有的對象都在堆 (Heap)中分配空間。另外,對象的釋放是由 GC 決定和執行的。在 Java 中,內存的分配是由程序完成的,而內存的釋放是由 GC 完成的,這種收支兩條線的方法確實簡化了程序員的工作。但同時,它也加重了JVM的工作。這也是 Java 程序運行速度較慢的原因之一。因爲,GC 爲了能夠正確釋放對象,GC 必須監控每一個對象的運行狀態,包括對象的申請、引用、被引用、賦值等,GC 都需要進行監控。

監視對象狀態是爲了更加準確地、及時地釋放對象,而釋放對象的根本原則就是該對象不再被引用。

爲了更好理解 GC 的工作原理,我們可以將對象考慮爲有向圖的頂點,將引用關係考慮爲圖的有向邊,有向邊從引用者指向被引對象。另外,每個線程對象可以作爲一個圖的起始頂點,例如大多程序從 main 進程開始執行,那麼該圖就是以 main 進程頂點開始的一棵根樹。在這個有向圖中,根頂點可達的對象都是有效對象,GC將不回收這些對象。如果某個對象 (連通子圖)與這個根頂點不可達(注意,該圖爲有向圖),那麼我們認爲這個(這些)對象不再被引用,可以被 GC 回收。
以下,我們舉一個例子說明如何用有向圖表示內存管理。對於程序的每一個時刻,我們都有一個有向圖表示JVM的內存分配情況。以下右圖,就是左邊程序運行到第6行的示意圖。

Java使用有向圖的方式進行內存管理,可以消除引用循環的問題,例如有三個對象,相互引用,只要它們和根進程不可達的,那麼GC也是可以回收它們的。這種方式的優點是管理內存的精度很高,但是效率較低。另外一種常用的內存管理技術是使用計數器,例如COM模型採用計數器方式管理構件,它與有向圖相比,精度行低(很難處理循環引用的問題),但執行效率很高。

什麼是Java中的內存泄露

在Java中,內存泄漏就是存在一些被分配的對象,這些對象有下面兩個特點,首先,這些對象是可達的,即在有向圖中,存在通路可以與其相連;其次,這些對象是無用的,即程序以後不會再使用這些對象。如果對象滿足這兩個條件,這些對象就可以判定爲Java中的內存泄漏,這些對象不會被GC所回收,然而它卻佔用內存。

在C++中,內存泄漏的範圍更大一些。有些對象被分配了內存空間,然後卻不可達,由於C++中沒有GC,這些內存將永遠收不回來。在Java中,這些不可達的對象都由GC負責回收,因此程序員不需要考慮這部分的內存泄露。

通過分析,我們得知,對於C++,程序員需要自己管理邊和頂點,而對於Java程序員只需要管理邊就可以了(不需要管理頂點的釋放)。通過這種方式,Java提高了編程的效率。

因此,通過以上分析,我們知道在Java中也有內存泄漏,但範圍比C++要小一些。因爲Java從語言上保證,任何對象都是可達的,所有的不可達對象都由GC管理。

對於程序員來說,GC基本是透明的,不可見的。雖然,我們只有幾個函數可以訪問GC,例如運行GC的函數System.gc(),但是根據Java語言規範定義, 該函數不保證JVM的垃圾收集器一定會執行。因爲,不同的JVM實現者可能使用不同的算法管理GC。通常,GC的線程的優先級別較低。JVM調用GC的策略也有很多種,有的是內存使用到達一定程度時,GC纔開始工作,也有定時執行的,有的是平緩執行GC,有的是中斷式執行GC。但通常來說,我們不需要關心這些。除非在一些特定的場合,GC的執行影響應用程序的性能,例如對於基於Web的實時系統,如網絡遊戲等,用戶不希望GC突然中斷應用程序執行而進行垃圾回收,那麼我們需要調整GC的參數,讓GC能夠通過平緩的方式釋放內存,例如將垃圾回收分解爲一系列的小步驟執行,Sun提供的HotSpot JVM就支持這一特性。

同樣給出一個 Java 內存泄漏的典型例子,

1

2

3

4

5

6

Vector v = new Vector(10);

for (int i = 1; i < 100; i++) {

Object o = new Object();

v.add(o);

o = null;

}

在這個例子中,我們循環申請Object對象,並將所申請的對象放入一個 Vector 中,如果我們僅僅釋放引用本身,那麼 Vector 仍然引用該對象,所以這個對象對 GC 來說是不可回收的。因此,如果對象加入到Vector 後,還必須從 Vector 中刪除,最簡單的方法就是將 Vector 對象設置爲 null。

詳細Java中的內存泄漏

1.Java內存回收機制

不論哪種語言的內存分配方式,都需要返回所分配內存的真實地址,也就是返回一個指針到內存塊的首地址。Java中對象是採用new或者反射的方法創建的,這些對象的創建都是在堆(Heap)中分配的,所有對象的回收都是由Java虛擬機通過垃圾回收機制完成的。GC爲了能夠正確釋放對象,會監控每個對象的運行狀況,對他們的申請、引用、被引用、賦值等狀況進行監控,Java會使用有向圖的方法進行管理內存,實時監控對象是否可以達到,如果不可到達,則就將其回收,這樣也可以消除引用循環的問題。在Java語言中,判斷一個內存空間是否符合垃圾收集標準有兩個:一個是給對象賦予了空值null,以下再沒有調用過,另一個是給對象賦予了新值,這樣重新分配了內存空間。

2.Java內存泄漏引起的原因

內存泄漏是指無用對象(不再使用的對象)持續佔有內存或無用對象的內存得不到及時釋放,從而造成內存空間的浪費稱爲內存泄漏。內存泄露有時不嚴重且不易察覺,這樣開發者就不知道存在內存泄露,但有時也會很嚴重,會提示你Out of memory。

Java內存泄漏的根本原因是什麼呢?長生命週期的對象持有短生命週期對象的引用就很可能發生內存泄漏,儘管短生命週期對象已經不再需要,但是因爲長生命週期持有它的引用而導致不能被回收,這就是Java中內存泄漏的發生場景。具體主要有如下幾大類:

1、靜態集合類引起內存泄漏:

像HashMap、Vector等的使用最容易出現內存泄露,這些靜態變量的生命週期和應用程序一致,他們所引用的所有的對象Object也不能被釋放,因爲他們也將一直被Vector等引用着。

例如

1

2

3

4

5

6

7

Static Vector v = new Vector(10);

for (int i = 1; i<100; i++)

{

Object o = new Object();

v.add(o);

o = null;

}

在這個例子中,循環申請Object 對象,並將所申請的對象放入一個Vector 中,如果僅僅釋放引用本身(o=null),那麼Vector 仍然引用該對象,所以這個對象對GC 來說是不可回收的。因此,如果對象加入到Vector 後,還必須從Vector 中刪除,最簡單的方法就是將Vector對象設置爲null。

2、當集合裏面的對象屬性被修改後,再調用remove()方法時不起作用。

例如:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

public static void main(String[] args)

{

Set<Person> set = new HashSet<Person>();

Person p1 = new Person("唐僧","pwd1",25);

Person p2 = new Person("孫悟空","pwd2",26);

Person p3 = new Person("豬八戒","pwd3",27);

set.add(p1);

set.add(p2);

set.add(p3);

System.out.println("總共有:"+set.size()+" 個元素!"); //結果:總共有:3 個元素!

p3.setAge(2); //修改p3的年齡,此時p3元素對應的hashcode值發生改變

set.remove(p3); //此時remove不掉,造成內存泄漏

set.add(p3); //重新添加,居然添加成功

System.out.println("總共有:"+set.size()+" 個元素!"); //結果:總共有:4 個元素!

for (Person person : set)

{

System.out.println(person);

}

}

3、監聽器

在java 編程中,我們都需要和監聽器打交道,通常一個應用當中會用到很多監聽器,我們會調用一個控件的諸如addXXXListener()等方法來增加監聽器,但往往在釋放對象的時候卻沒有記住去刪除這些監聽器,從而增加了內存泄漏的機會。

4、各種連接

比如數據庫連接(dataSourse.getConnection()),網絡連接(socket)和io連接,除非其顯式的調用了其close()方法將其連接關閉,否則是不會自動被GC 回收的。對於Resultset 和Statement 對象可以不進行顯式回收,但Connection 一定要顯式回收,因爲Connection 在任何時候都無法自動回收,而Connection一旦回收,Resultset 和Statement 對象就會立即爲NULL。但是如果使用連接池,情況就不一樣了,除了要顯式地關閉連接,還必須顯式地關閉Resultset Statement 對象(關閉其中一個,另外一個也會關閉),否則就會造成大量的Statement 對象無法釋放,從而引起內存泄漏。這種情況下一般都會在try裏面去的連接,在finally裏面釋放連接。

5、內部類和外部模塊的引用

內部類的引用是比較容易遺忘的一種,而且一旦沒釋放可能導致一系列的後繼類對象沒有釋放。此外程序員還要小心外部模塊不經意的引用,例如程序員A 負責A 模塊,調用了B 模塊的一個方法如:

public void registerMsg(Object b);

這種調用就要非常小心了,傳入了一個對象,很可能模塊B就保持了對該對象的引用,這時候就需要注意模塊B 是否提供相應的操作去除引用。

6、單例模式

不正確使用單例模式是引起內存泄漏的一個常見問題,單例對象在初始化後將在JVM的整個生命週期中存在(以靜態變量的方式),如果單例對象持有外部的引用,那麼這個對象將不能被JVM正常回收,導致內存泄漏,考慮下面的例子:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

class A{

public A(){

B.getInstance().setA(this);

}

....

}

//B類採用單例模式

class B{

private A a;

private static B instance=new B();

public B(){}

public static B getInstance(){

return instance;

}

public void setA(A a){

this.a=a;

}

//getter...

}

顯然B採用singleton模式,它持有一個A對象的引用,而這個A類的對象將不能被回收。想象下如果A是個比較複雜的對象或者集合類型會發生什麼情況

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章