進程實體 內存劃分


進程地址空間中典型的存儲區域分配情況如下圖所示(出自《UNIX環境高級編程》):

 

從圖中可以看出:

從低地址到高地址分別內存區分別爲:

  1. 代碼段

  2. 數據段(初始化)

  3. 數據段(未初始化)(BSS)

  4. 命令行參數和環境變量

其中,堆向高內存地址生長,棧向低內存地址生長。

 

在進程的地址空間中:

  1. 代碼段中存放:全局常量(const)、字符串常量、函數以及編譯時可決定的某些東西

  2. 數據段(初始化)中存放:初始化的全局變量、初始化的靜態變量(全局的和局部的)

  3. 數據段(未初始化)(BSS)中存放:未初始化的全局變量、未初始化的靜態變量(全局的和局部的)

  4. 堆中存放:動態分配的區域(malloc、new等)

  5. 棧中存放:局部變量(初始化以及未初始化的,但不包含靜態變量)、局部常量(const)

  6. 命令行參數和環境變量顧名思義存放命令行參數和環境變量微笑


進程(執行的程序)會佔用一定數量的內存,它或是用來存放從磁盤載入的程序代碼,或是存放取自用戶輸入的數據等等。不過進程對這些內存的管理方式因內存用途 不一而不盡相同,有些內存是事先靜態分配和統一回收的,而有些卻是按需要動態分配和回收的。對任何一個普通進程來講,它都會涉及到5種不同的數據段。

Linux進程的五個段

下面我們來簡單歸納一下進程對應的內存空間中所包含的5種不同的數據區都是幹什麼的。

BSS段:BSS段(bss segment)通常是指用來存放程序中未初始化的全局變量的一塊內存區域。BSS是英文Block Started by Symbol的簡稱。BSS段屬於靜態內存分配。

數據段:數據段(data segment)通常是指用來存放程序中已初始化的全局變量的一塊內存區域。數據段屬於靜態內存分配。

代碼段:代碼段(code segment/text segment)通常是指用來存放程序執行代碼的一塊內存區域。這部分區域的大小在程序運行前就已經確定,並且內存區域通常屬於只讀, 某些架構也允許代碼段爲可寫,即允許修改程序。在代碼段中,也有可能包含一些只讀的常數變量,例如字符串常量等。

堆(heap):是用於存放進程運行中被動態分配的內存段,它的大小並不固定,可動態擴張或縮減。當進程調用malloc等函數分配內存時,新分配的內存就被動態添加到堆上(堆被擴張);當利用free等函數釋放內存時,被釋放的內存從堆中被剔除(堆被縮減)

棧(stack):棧又稱堆棧, 是用戶存放程序臨時創建的局部變量,也就是說我們函數括弧“{}”中定義的變量(但不包括static聲明的變量,static意味着在數據段中存放變量)。除此以外,在函數被調用時,其參數也會被壓入發起調用的進程棧中,並且待到調用結束後,函數的返回值也會被存放回棧中。由於棧的先進先出特點,所以棧特別方便用來保存/恢復調用現場。從這個意義上講,我們可以把堆棧看成一個寄存、交換臨時數據的內存區。

它是由操作系統分配的,內存的申請與回收都由OS管理。

PS:

全局的未初始化變量存在於.bss段中,具體體現爲一個佔位符;全局的已初始化變量存於.data段中;而函數內的自動變量都在棧上分配空間。.bss是不佔用.exe文件空間的,其內容由操作系統初始化(清零);而.data卻需要佔用,其內容由程序初始化,因此造成了上述情況。

bss段(未手動初始化的數據)並不給該段的數據分配空間,只是記錄數據所需空間的大小。
data(已手動初始化的數據)段則爲數據分配空間,數據保存在目標文件中。 數據段包含經過初始化的全局變量以及它們的值。BSS段的大小從可執行文件中得到 ,然後鏈接器得到這個大小的內存塊,緊跟在數據段後面。當這個內存區進入程序的地址空間後全部清零。包含數據段和BSS段的整個區段此時通常稱爲數據區。



以下引自:http://www.cnblogs.com/JCSU/articles/1051579.html

一. 在c中分爲這幾個存儲區
1.棧 - 由編譯器自動分配釋放
2.堆 - 一般由程序員分配釋放,若程序員不釋放,程序結束時可能由OS回收
3.全局區(靜態區),全局變量和靜態變量的存儲是放在一塊的,初始化的全局變量和靜態變量在一塊區域,未初始化的全局變量和未初始化的靜態變量在相鄰的另一塊區域。- 程序結束釋放
4.另外還有一個專門放常量的地方。- 程序結束釋放
                                                                                                                                              
在函數體中定義的變量通常是在棧上,用malloc, calloc, realloc等分配內存的函數分配得到的就是在堆上。在所有函數體外定義的是全局量,加了static修飾符後不管在哪裏都存放在全局區(靜態區),在所有函數體外定義的static變量表示在該文件中有效,不能extern到別的文件用,在函數體內定義的static表示只在該函數體內有效。另外,函數中的"adgfdf"這樣的字符串存放在常量區。比如:

int a = 0; //全局初始化區
char *p1; //全局未初始化區
void main()
{
    int b; //
    char s[] = "abc"; //
    char *p2; //
    char *p3 = "123456"; //123456{post.content}在常量區,p3在棧上
    static int c = 0; //全局(靜態)初始化區
    p1 = (char *)malloc(10); //分配得來得10字節的區域在堆區
    p2 = (char *)malloc(20); //分配得來得20字節的區域在堆區
    strcpy(p1, "123456");
    //123456{post.content}放在常量區,編譯器可能會將它與p3所指向的"123456"優化成一塊
}


二.在C++中,內存分成5個區,他們分別是堆、棧、自由存儲區、全局/靜態存儲區和常量存儲區
1.棧,
就是那些由編譯器在需要的時候分配,在不需要的時候自動清楚的變量的存儲區。裏面的變量通常是局部變量、函數參數等。
2.堆,就是那些由new分配的內存塊,他們的釋放編譯器不去管,由我們的應用程序去控制,一般一個new就要對應一個delete。如果程序員沒有釋放掉,那麼在程序結束後,操作系統會自動回收。
3.自由存儲區,就是那些由malloc等分配的內存塊,他和堆是十分相似的,不過它是用free來結束自己的生命的。
4.全局/靜態存儲區,全局變量和靜態變量被分配到同一塊內存中,在以前的C語言中,全局變量又分爲初始化的和未初始化的,在C++裏面沒有這個區分了,他們共同佔用同一塊內存區。
5.常量存儲區,這是一塊比較特殊的存儲區,他們裏面存放的是常量,不允許修改(當然,你要通過非正當手段也可以修改)

三. 談談堆與棧的關係與區別
具體地說,現代計算機(串行執行機制),都直接在代碼底層支持棧的數據結構。這體現在,有專門的寄存器指向棧所在的地址,有專門的機器指令完成數據入棧出棧的操作。這種機制的特點是效率高,支持的數據有限,一般是整數,指針,浮點數等系統直接支持的數據類型,並不直接支持其他的數據結構。因爲棧的這種特點,對棧的使用在程序中是非常頻繁的。對子程序的調用就是直接利用棧完成的。機器的call指令裏隱含了把返回地址推入棧,然後跳轉至子程序地址的操作,而子程序中的ret指令則隱含從堆棧中彈出返回地址並跳轉之的操作。C/C++中的自動變量是直接利用棧的例子,這也就是爲什麼當函數返回時,該函數的自動變量自動失效的原因。 

和棧不同,堆的數據結構並不是由系統(無論是機器系統還是操作系統)支持的,而是由函數庫提供的。基本的malloc/realloc/free 函數維護了一套內部的堆數據結構。當程序使用這些函數去獲得新的內存空間時,這套函數首先試圖從內部堆中尋找可用的內存空間,如果沒有可以使用的內存空間,則試圖利用系統調用來動態增加程序數據段的內存大小,新分配得到的空間首先被組織進內部堆中去,然後再以適當的形式返回給調用者。當程序釋放分配的內存空間時,這片內存空間被返回內部堆結構中,可能會被適當的處理(比如和其他空閒空間合併成更大的空閒空間),以更適合下一次內存分配申請。這套複雜的分配機制實際上相當於一個內存分配的緩衝池(Cache),使用這套機制有如下若干原因:
1. 系統調用可能不支持任意大小的內存分配。有些系統的系統調用只支持固定大小及其倍數的內存請求(按頁分配);這樣的話對於大量的小內存分類來說會造成浪費。
2. 系統調用申請內存可能是代價昂貴的。系統調用可能涉及用戶態和核心態的轉換。
3. 沒有管理的內存分配在大量複雜內存的分配釋放操作下很容易造成內存碎片。

堆和棧的對比
從以上知識可知,棧是系統提供的功能,特點是快速高效,缺點是有限制,數據不靈活;而棧是函數庫提供的功能,特點是靈活方便,數據適應面廣泛,但是效率有一定降低。棧是系統數據結構,對於進程/線程是唯一的;堆是函數庫內部數據結構,不一定唯一。不同堆分配的內存無法互相操作。棧空間分靜態分配和動態分配兩種。靜態分配是編譯器完成的,比如自動變量(auto)的分配。動態分配由alloca函數完成。棧的動態分配無需釋放(是自動的),也就沒有釋放函數。爲可移植的程序起見,棧的動態分配操作是不被鼓勵的!堆空間的分配總是動態的,雖然程序結束時所有的數據空間都會被釋放回系統,但是精確的申請內存/ 釋放內存匹配是良好程序的基本要素。

    1.碎片問題:對於堆來講,頻繁的new/delete勢必會造成內存空間的不連續,從而造成大量的碎片,使程序效率降低。對於棧來講,則不會存在這個問題,因爲棧是先進後出的隊列,他們是如此的一一對應,以至於永遠都不可能有一個內存塊從棧中間彈出,在他彈出之前,在他上面的後進的棧內容已經被彈出,詳細的可以>參考數據結構,這裏我們就不再一一討論了。
    2.生長方向:對於堆來講,生長方向是向上的,也就是向着內存地址增加的方向;對於棧來講,它的生長方向是向下的,是向着內存地址減小的方向增長。
    3.分配方式:堆都是動態分配的,沒有靜態分配的堆。棧有2種分配方式:靜態分配和動態分配。靜態分配是編譯器完成的,比如局部變量的分配。動態分配由alloca函數進行分配,但是棧的動態分配和堆是不同的,他的動態分配是由編譯器進行釋放,無需我們手工實現。
    4.分配效率:棧是機器系統提供的數據結構,計算機會在底層對棧提供支持:分配專門的寄存器存放棧的地址,壓棧出棧都有專門的指令執行,這就決定了棧的效率比較高。堆則是C/C++函數庫提供的,它的機制是很複雜的,例如爲了分配一塊內存,庫函數會按照一定的算法(具體的算法可以參考數據結構/操作系統)在堆內存中搜索可用的足夠大小的空間,如果沒有足夠大小的空間(可能是由於內存碎片太多),就有可能調用系統功能去增加程序數據段的內存空間,這樣就有機會分到足夠大小的內存,然後進行返回。顯然,堆的效率比棧要低得多。

    明確區分堆與棧:
    在bbs上,堆與棧的區分問題,似乎是一個永恆的話題,由此可見,初學者對此往往是混淆不清的,所以我決定拿他第一個開刀。
    首先,我們舉一個例子:
void f()

    int* p=new int[5];
}

這條短短的一句話就包含了堆與棧,看到new,我們首先就應該想到,我們分配了一塊堆內存,那麼指針p呢?他分配的是一塊棧內存,所以這句話的意思就是:在棧內存中存放了一個指向一塊堆內存的指針p。在程序會先確定在堆中分配內存的大小,然後調用operator new分配內存,然後返回這塊內存的首地址,放入棧中,他在VC6下的彙編代碼如下:
    00401028    push         14h
    0040102A    call            operator new (00401060)
    0040102F    add           esp,4
    00401032    mov          dword ptr [ebp-8],eax
    00401035    mov          eax,dword ptr [ebp-8]
    00401038    mov          dword ptr [ebp-4],eax
    這裏,我們爲了簡單並沒有釋放內存,那麼該怎麼去釋放呢?是delete p麼?澳,錯了,應該是delete []p,這是爲了告訴編譯器:我刪除的是一個數組,VC6就會根據相應的Cookie信息去進行釋放內存的工作。
    好了,我們回到我們的主題:堆和棧究竟有什麼區別?
    主要的區別由以下幾點:
    1、管理方式不同;
    2、空間大小不同;
    3、能否產生碎片不同;
    4、生長方向不同;
    5、分配方式不同;
    6、分配效率不同;
    管理方式:對於棧來講,是由編譯器自動管理,無需我們手工控制;對於堆來說,釋放工作由程序員控制,容易產生memory leak。
    空間大小:一般來講在32位系統下,堆內存可以達到4G的空間,從這個角度來看堆內存幾乎是沒有什麼限制的。但是對於棧來講,一般都是有一定的空間大小的,例如,在VC6下面,默認的棧空間大小是1M(好像是,記不清楚了)。當然,我們可以修改:
    打開工程,依次操作菜單如下:Project->Setting->Link,在Category 中選中Output,然後在Reserve中設定堆棧的最大值和commit。
注意:reserve最小值爲4Byte;commit是保留在虛擬內存的頁文件裏面,它設置的較大會使棧開闢較大的值,可能增加內存的開銷和啓動時間。
    堆和棧相比,由於大量new/delete的使用,容易造成大量的內存碎片;由於沒有專門的系統支持,效率很低;由於可能引發用戶態和核心態的切換,內存的申請,代價變得更加昂貴。所以棧在程序中是應用最廣泛的,就算是函數的調用也利用棧去完成,函數調用過程中的參數,返回地址,EBP和局部變量都採用棧的方式存放。所以,我們推薦大家儘量用棧,而不是用堆。

另外對存取效率的比較:
代碼:
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在運行時刻賦值的;
而bbbbbbbbbbb是在編譯時就確定的;
但是,在以後的存取中,在棧上的數組比指針所指向的字符串(例如堆)快
比如:
void main()
{
    char a = 1;
    char c[] = "1234567890";
    char *p ="1234567890";
    a = c[1];
    a = p[1];
    return;
}

對應的彙編代碼
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al
第一種在讀取時直接就把字符串中的元素讀到寄存器cl中,而第二種則要先把指針值讀到edx中,在根據edx讀取字符,顯然慢了.
    無論是堆還是棧,都要防止越界現象的發生(除非你是故意使其越界),因爲越界的結果要麼是程序崩潰,要麼是摧毀程序的堆、棧結構,產生以想不到的結果,就算是在你的程序運行過程中,沒有發生上面的問題,你還是要小心,說不定什麼時候就崩掉,編寫穩定安全的代碼纔是最重要的

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章