【Python数据结构】二分查找、二叉树(广度优先、深度优先、二叉树反推)

搜索和树

二分法查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

二分法查找实现

递归实现

def binary_search(alist, item):
    if len(alist) == 0:
        return False
    else:
        midpoint = len(alist)//2
        if alist[midpoint]==item:
          return True
        else:
          if item<alist[midpoint]:
            return binary_search(alist[:midpoint],item)
          else:
            return binary_search(alist[midpoint+1:],item)

testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

非递归实现

def binary_search(alist, item):
      first = 0
      last = len(alist)-1
      while first<=last:
          midpoint = (first + last)/2
          if alist[midpoint] == item:
              return True
          elif item < alist[midpoint]:
              last = midpoint-1
          else:
              first = midpoint+1
    return False
testlist = [0, 1, 2, 8, 13, 17, 19, 32, 42,]
print(binary_search(testlist, 3))
print(binary_search(testlist, 13))

时间复杂度

  • 最优时间复杂度:O(1)
  • 最坏时间复杂度:O(logn)

二叉树的基本概念

二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)

二叉树的性质(特性)

性质1:在二叉树的第i层上至多有2^(i-1)个结点

性质2:深度为k的二叉树至多有2^k - 1个结点

性质3:对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;

性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)

性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)

(1)完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树。

(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。

二叉树的节点表示以及树的创建

通过使用Node类中定义三个属性,分别为elem本身的值,还有lchild左孩子和rchild右孩子

class Node(object):
    """节点类"""
    def __init__(self, elem=-1, lchild=None, rchild=None):
        self.elem = elem
        self.lchild = lchild
        self.rchild = rchild

树的创建,创建一个树的类,并给一个root根节点,一开始为空,随后添加节点

class Tree(object):
    """树类"""
    def __init__(self, root=None):
        self.root = root

    def add(self, elem):
        """为树添加节点"""
        node = Node(elem)
        #如果树是空的,则对根节点赋值
        if self.root == None:
            self.root = node
        else:
            queue = []
            queue.append(self.root)
            #对已有的节点进行层次遍历
            while queue:
                #弹出队列的第一个元素
                cur = queue.pop(0)
                if cur.lchild == None:
                    cur.lchild = node
                    return
                elif cur.rchild == None:
                    cur.rchild = node
                    return
                else:
                    #如果左右子树都不为空,加入队列继续判断
                    queue.append(cur.lchild)
                    queue.append(cur.rchild)

深度优先遍历

对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。

那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。

  • 先序遍历 在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
    根节点->左子树->右子树
    def preorder(self, root):
    “”“递归实现先序遍历”""
    if root == None:
    return
    print root.elem
    self.preorder(root.lchild)
    self.preorder(root.rchild)
  • 中序遍历 在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树
    左子树->根节点->右子树
    def inorder(self, root):
    “”“递归实现中序遍历”""
    if root == None:
    return
    self.inorder(root.lchild)
    print root.elem
    self.inorder(root.rchild)
  • 后序遍历 在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点
    左子树->右子树->根节点
    def postorder(self, root):
    “”“递归实现后续遍历”""
    if root == None:
    return
    self.postorder(root.lchild)
    self.postorder(root.rchild)
    print root.elem
    在这里插入图片描述

广度优先遍历(层次遍历)

从树的root开始,从上到下从从左到右遍历整个树的节点

—队列—特点:一头进一头出,先进先出

def breadth_travel(self):
        """利用队列实现树的层次遍历"""
        if root == None:
            return
        queue = []
        queue.append(root)
        while queue:
            node = queue.pop(0)
            print node.elem,
            if node.lchild != None:
                queue.append(node.lchild)
            if node.rchild != None:
                queue.append(node.rchild)

二叉树反推(拓展)

  1. 了解 二叉树的反推

二叉树有三种深度优先遍历方法:先序中序和后序,如果已知中序和先序,或已知中序和后序,可以确定二叉树的结构。

例:

先序:0 1 3 7 8 4 9 2 5 6

中序:7 3 8 1 9 4 0 5 2 6

1、先序找根,中序定两边

先序的特点是第一个元素是根确定0是根节点,中序的特点是根两侧分别是左右子树确定7 3 8 1 9 4 在0左边,5 2 6在0右边

所以我们反推分界初始图:

在这里插入图片描述

2、左右分别重复1操作

所以左侧子树的根节点是1,右侧子树的根节点是2
在这里插入图片描述

3、不停的重复1操作

最终的二叉树图是:

在这里插入图片描述

發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章