【ZT】JAVA性能優化—Sun Hotspot JDK JVM參數設置

原文地址:http://www.hashei.me/2009/05/tuning-the-sun-hotspot-jdk.html

======================================================

本文主要根據這篇PDF(GCTuningGuidelines)寫成。

首先是JDK1.5引入的新功能 Ergonomic Settings(自動優化的參數)

對於有2塊CPU和2GB內存及更佳配置的服務器,Sun的hotspot jdk默認設置瞭如下參數:

  • -server :服務器模式編譯
  • -XX:+UseParallelGC 並行收集
  • -Xms設置爲服務器物理內存的1/64
  • -Xmx設置爲服務器物理內存的1/4(最大爲1G)

我在網上發現了這篇文章,也是根據那篇PDF寫的,基本都翻譯過來了,那我就不再做造輪子的過程了。有些自己的想法會用紅色標出。

摘自         http://unixboy.iteye.com/

原文鏈接 JVM調優總結 -Xms -Xmx -Xmn -Xss

  1. 堆大小設置 JVM 中最大堆大小有三方面限制:相關操作系統的數據模型(32-bt還是64-bit)限制;系統的可用虛擬內存限制;系統的可用物理內存限制。32位系統 下,一般限制在1.5G~2G;64爲操作系統對內存無限制。我在Windows Server 2003 系統,3.5G物理內存,JDK5.0下測試,最大可設置爲1478m。

    典型設置(例子中的堆分配的都比較大,注意自己平臺的限制,下文同)

    • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k-Xmx3550m:設置JVM最大可用內存爲3550M。

      -Xms3550m:設置JVM促使內存爲3550m。此值可以設置與-Xmx相同,以避免每次垃圾回收完成後JVM重新分配內存(就是收縮和擴張,分代回收加上Sun內存分配的算法,避免了IBM JDK最小堆和最大堆一樣上的缺陷,但是這對-Xms和-Xmx的設置有了更高的要求,應該是多次試驗確定一個合適的大小)。

      -Xmn2g:設置年輕代大小爲2G。整個堆大小=年輕代大小 + 年老代大小 + 持久代大小。持久代一般固定大小爲64m,所以增大年輕代後,將會減小年老代大小。此值對系統性能影響較大,Sun官方推薦配置爲整個堆的3/8。從下圖,應該可以看到整個堆大小=年輕代大小 + 年老代大小,Xms和Xmx不包括Perm Size。

    • -Xss128k: 設置每個線程的堆棧大小。JDK5.0以後每個線程堆棧大小爲1M,以前每個線程堆棧大小爲256K。更具應用的線程所需內存大小進行調整。在相同物理內 存下,減小這個值能生成更多的線程。但是操作系統對一個進程內的線程數還是有限制的,不能無限生成,經驗值在3000~5000左右。
    • java -Xmx3550m -Xms3550m -Xss128k -XX:NewRatio=4 -XX:SurvivorRatio=4 -XX:MaxPermSize=16m -XX:MaxTenuringThreshold=0-XX:NewRatio=4:設置年輕代(包括Eden和兩個Survivor區)與年老代的比值(除去持久代)。設置爲4,則年輕代與年老代所佔比值爲1:4,年輕代佔整個堆棧的1/5

      -XX:SurvivorRatio=4:設置年輕代中Eden區與Survivor區的大小比值。設置爲4,則兩個Survivor區與一個Eden區的比值爲2:4,一個Survivor區佔整個年輕代的1/6

      -XX:MaxPermSize=16m:設置持久代大小爲16m。

      -XX:MaxTenuringThreshold=0:設置垃圾最大年齡。如果設置爲0的話,則年輕代對象不經過Survivor區,直接進入年老代。對於年老代比較多的應用,可以提高效率。如果將此值設置爲一個較大值,則年輕代對象會在Survivor區進行多次複製,這樣可以增加對象再年輕代的存活時間,增加在年輕代即被回收的概率。下面要介紹的CMS(併發)收集器,SurvivorRatio默認爲1024 MaxTenuringThreshold默認爲0,可以手動調整,降低年老代的回收壓力,即照顧到吞吐率,又關注到相應時間。

  2. 回收器選擇 JVM給了三種選擇:串行收集器、並行收集器、併發收集器,但是串行收集器只適用於小數據量的情況,所以這裏的選擇主要針對並行收集器和併發收集器。默認情況下,JDK5.0以前都是使用串行收集器,如果想使用其他收集器需要在啓動時加入相應參數。JDK5.0以後,JVM會根據當前系統配置進行判斷。
    1. 吞吐量優先的並行收集器如上文所述,並行收集器主要以到達一定的吞吐量爲目標,適用於科學技術和後臺處理等。

      典型配置

      • java -Xmx3800m -Xms3800m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20-XX:+UseParallelGC:選擇垃圾收集器爲並行收集器。此配置僅對年輕代有效。即上述配置下,年輕代使用併發收集,而年老代仍舊使用串行收集。

        -XX:ParallelGCThreads=20:配置並行收集器的線程數,即:同時多少個線程一起進行垃圾回收。此值最好配置與處理器數目相等。應該等於或者小於cpu數量(核),否則沒有意義,而當服務器的CPU數小於等於2時,用併發收集和串行收集效率一樣。

      • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC -XX:ParallelGCThreads=20 -XX:+UseParallelOldGC -XX:+UseParallelOldGC:配置年老代垃圾收集方式爲並行收集。JDK6.0支持對年老代並行收集。
      • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100 -XX:MaxGCPauseMillis=100:設置每次年輕代垃圾回收的最長時間,如果無法滿足此時間,JVM會自動調整年輕代大小,以滿足此值。-XX:GCTimeRatio=<nnn>參數則是設置GC時間和運行時間的比值,GC時間佔整個運行時間的1 / (1 + <nnn>)。這兩個參數PauseMillis的優先級比GCTimeRatio高,且僅對並行收集器有效。但是從“Additionally, as an implicit goal the throughput collector will try to met the other goals in the smallest heap that it can.”覺得JVM並非自動調整年輕代,而是整個堆的大小,個人覺得此時應該設置堆大小的一個範圍,且不能手動設置-Xmn2g,否則如何調整?可惜文檔中未有清晰寫明,不過幸運的是一般調整也不必到如此細緻的地步。
      • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseParallelGC  -XX:MaxGCPauseMillis=100 -XX:+UseAdaptiveSizePolicy -XX:+UseAdaptiveSizePolicy:設置此選項後,並行收集器會自動選擇年輕代區大小和相應的Survivor區比例,以達到目標系統規定的最低相應時間或者收集頻率等,此值建議使用並行收集器時,一直打開。在1.5版本中默認打開 http://java.sun.com/j2se/1.5.0/docs/guide/vm/gc-ergonomics.html中有詳細描述。
    2. 響應時間優先的併發收集器如上文所述,併發收集器主要是保證系統的響應時間,減少垃圾收集時的停頓時間。適用於應用服務器、電信領域等。

      典型配置

      • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:ParallelGCThreads=20 -XX:+UseConcMarkSweepGC -XX:+UseParNewGC -XX:+UseConcMarkSweepGC:設置年老代爲併發收集。測試中配置這個以後,-XX:NewRatio=4的配置失效了,原因不明。所以,此時年輕代大小最好用-Xmn設置。

        -XX:+UseParNewGC:設置年輕代爲並行收集。可與CMS收集同時使用。JDK5.0以上,JVM會根據系統配置自行設置,所以無需再設置此值。

      • java -Xmx3550m -Xms3550m -Xmn2g -Xss128k -XX:+UseConcMarkSweepGC -XX:CMSFullGCsBeforeCompaction=5 -XX:+UseCMSCompactAtFullCollection-XX:CMSFullGCsBeforeCompaction:由於併發收集器不對內存空間進行壓縮、整理,所以運行一段時間以後會產生“碎片”,使得運行效率降低。此值設置運行多少次GC以後對內存空間進行壓縮、整理。

        -XX:+UseCMSCompactAtFullCollection:打開對年老代的壓縮。可能會影響性能,但是可以消除碎片

  3. 輔助信息 JVM提供了大量命令行參數,打印信息,供調試使用。主要有以下一些:
    • -XX:+PrintGC 輸出形式:[GC 118250K->113543K(130112K), 0.0094143 secs] [Full GC 121376K->10414K(130112K), 0.0650971 secs]
    • -XX:+PrintGCDetails 輸出形式:[GC [DefNew: 8614K->781K(9088K), 0.0123035 secs] 118250K->113543K(130112K), 0.0124633 secs] [GC [DefNew: 8614K->8614K(9088K), 0.0000665 secs][Tenured: 112761K->10414K(121024K), 0.0433488 secs] 121376K->10414K(130112K), 0.0436268 secs]
    • -XX:+PrintGCTimeStamps -XX:+PrintGC:PrintGCTimeStamps可與上面兩個混合使用輸出形式:11.851: [GC 98328K->93620K(130112K), 0.0082960 secs]

    • -XX:+PrintGCApplicationConcurrentTime:打印每次垃圾回收前,程序未中斷的執行時間。可與上面混合使用輸出形式:Application time: 0.5291524 seconds

    • -XX:+PrintGCApplicationStoppedTime:打印垃圾回收期間程序暫停的時間。可與上面混合使用輸出形式:Total time for which application threads were stopped: 0.0468229 seconds

    • -XX:PrintHeapAtGC:打印GC前後的詳細堆棧信息輸出形式:

      34.702: [GC {Heap before gc invocations=7:

      def new generation   total 55296K, used 52568K [0x1ebd0000, 0x227d0000, 0x227d0000)

      eden space 49152K,  99% used [0x1ebd0000, 0x21bce430, 0x21bd0000)

      from space 6144K,  55% used [0x221d0000, 0x22527e10, 0x227d0000)

      to   space 6144K,   0% used [0x21bd0000, 0x21bd0000, 0x221d0000)

      tenured generation   total 69632K, used 2696K [0x227d0000, 0x26bd0000, 0x26bd0000)

      the space 69632K,   3% used [0x227d0000, 0x22a720f8, 0x22a72200, 0x26bd0000)

      compacting perm gen  total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)

      the space 8192K,  35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)

      ro space 8192K,  66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)

      rw space 12288K,  46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)

      34.735: [DefNew: 52568K->3433K(55296K), 0.0072126 secs] 55264K->6615K(124928K)Heap after gc invocations=8:

      def new generation   total 55296K, used 3433K [0x1ebd0000, 0x227d0000, 0x227d0000)

      eden space 49152K,   0% used [0x1ebd0000, 0x1ebd0000, 0x21bd0000)

      from space 6144K,  55% used [0x21bd0000, 0x21f2a5e8, 0x221d0000)

      to   space 6144K,   0% used [0x221d0000, 0x221d0000, 0x227d0000)

      tenured generation   total 69632K, used 3182K [0x227d0000, 0x26bd0000, 0x26bd0000)

      the space 69632K,   4% used [0x227d0000, 0x22aeb958, 0x22aeba00, 0x26bd0000)

      compacting perm gen  total 8192K, used 2898K [0x26bd0000, 0x273d0000, 0x2abd0000)

      the space 8192K,  35% used [0x26bd0000, 0x26ea4ba8, 0x26ea4c00, 0x273d0000)

      ro space 8192K,  66% used [0x2abd0000, 0x2b12bcc0, 0x2b12be00, 0x2b3d0000)

      rw space 12288K,  46% used [0x2b3d0000, 0x2b972060, 0x2b972200, 0x2bfd0000)

      }

      , 0.0757599 secs]

    • -Xloggc:filename:與上面幾個配合使用,把相關日誌信息記錄到文件以便分析。
  4. 常見配置彙總
    1. 堆設置
      • -Xms:初始堆大小
      • -Xmx:最大堆大小
      • -XX:NewSize=n:設置年輕代大小
      • -XX:NewRatio=n:設置年輕代和年老代的比值。如:爲3,表示年輕代與年老代比值爲1:3,年輕代佔整個年輕代年老代和的1/4
      • -XX:SurvivorRatio=n:年輕代中Eden區與兩個Survivor區的比值。注意Survivor區有兩個。如:3,表示Eden:Survivor=3:2,一個Survivor區佔整個年輕代的1/5
      • -XX:MaxPermSize=n:設置持久代大小
    2. 收集器設置
      • -XX:+UseSerialGC:設置串行收集器
      • -XX:+UseParallelGC:設置並行收集器
      • -XX:+UseParalledlOldGC:設置並行年老代收集器
      • -XX:+UseConcMarkSweepGC:設置併發收集器
    3. 垃圾回收統計信息
      • -XX:+PrintGC
      • -XX:+PrintGCDetails
      • -XX:+PrintGCTimeStamps
      • -Xloggc:filename
    4. 並行收集器設置
      • -XX:ParallelGCThreads=n:設置並行收集器收集時使用的CPU數。並行收集線程數。
      • -XX:MaxGCPauseMillis=n:設置並行收集最大暫停時間
      • -XX:GCTimeRatio=n:設置垃圾回收時間佔程序運行時間的百分比。公式爲1/(1+n)
    5. 併發收集器設置
      • -XX:+CMSIncrementalMode:設置爲增量模式。適用於單CPU情況。
      • -XX:ParallelGCThreads=n:設置併發收集器年輕代收集方式爲並行收集時,使用的CPU數。並行收集線程數。

四、調優總結

  1. 年輕代大小選擇
    • 響應時間優先的應用儘可能設大,直到接近系統的最低響應時間限制(根據實際情況選擇)。在此種情況下,年輕代收集發生的頻率也是最小的。同時,減少到達年老代的對象。
    • 吞吐量優先的應用:儘可能的設置大,可能到達Gbit的程度。因爲對響應時間沒有要求,垃圾收集可以並行進行,一般適合8CPU以上的應用。
  2. 年老代大小選擇
    • 響應時間優先的應用:年老代使用併發收集器,所以其大小需要小心設置,一般要考慮併發會話率會話持續時間等一些參數。如果堆設置小了,可以會造成內存碎片、高回收頻率以及應用暫停而使用傳統的標記清除方式;如果堆大了,則需要較長的收集時間。最優化的方案,一般需要參考以下數據獲得:
      • 併發垃圾收集信息
      • 持久代併發收集次數
      • 傳統GC信息
      • 花在年輕代和年老代回收上的時間比例

      減少年輕代和年老代花費的時間,一般會提高應用的效率

    • 吞吐量優先的應用:一般吞吐量優先的應用都有一個很大的年輕代和一個較小的年老代。原因是,這樣可以儘可能回收掉大部分短期對象,減少中期的對象,而年老代盡存放長期存活對象。
  3. 較小堆引起的碎片問題 因 爲年老代的併發收集器使用標記、清除算法,所以不會對堆進行壓縮。當收集器回收時,他會把相鄰的空間進行合併,這樣可以分配給較大的對象。但是,當堆空間 較小時,運行一段時間以後,就會出現“碎片”,如果併發收集器找不到足夠的空間,那麼併發收集器將會停止,然後使用傳統的標記、清除方式進行回收。如果出 現“碎片”,可能需要進行如下配置:
    • -XX:+UseCMSCompactAtFullCollection:使用併發收集器時,開啓對年老代的壓縮。
    • -XX:CMSFullGCsBeforeCompaction=0:上面配置開啓的情況下,這裏設置多少次Full GC後,對年老代進行壓縮

五、PDF中提到的另外一些參數

-XX:+AggressiveOpts:作用如其名(aggressive),啓用這個參數,則每當JDK版本升級時,你的JVM都會使用最新加入的優化技術(如果有的話)

-XX:+UseBiasedLocking:不是很理解,請自行閱讀http://java.sun.com/performance/reference/whitepapers/tuning.html#section4.2.5

五、參考資料

Java HotSpot VM Options

Java Tuning White Paper

Diagnosing a Garbage Collection problem

J2SE 5.0 Performance White Paper

Tuning Garbage Collection with the 5.0 Java[tm] Virtual Machine

Garbage Collector Ergonomics

Can anyone help me understand UseAdaptiveSizePolicy flag?

<script type="text/javascript"></script><script src="http://re.xianguo.com/api/diggthis.js" type="text/javascript"></script>

發佈了21 篇原創文章 · 獲贊 0 · 訪問量 3774
發表評論
所有評論
還沒有人評論,想成為第一個評論的人麼? 請在上方評論欄輸入並且點擊發布.
相關文章